Article

Force-Generation Capacity of Single Vastus Lateralis Muscle Fibers and Physical Function Decline With Age in African Green Vervet Monkeys.

Department of Internal Medicine, Gerontology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157. .
The Journals of Gerontology Series A Biological Sciences and Medical Sciences (Impact Factor: 4.98). 08/2012; DOI: 10.1093/gerona/gls143
Source: PubMed

ABSTRACT Previous studies on the contractile properties of human myofibrils reported increase, decrease, or no change with aging, perhaps due to the differences in physical activity, diet, and other factors. This study examined physical performance and contractile characteristics of myofibrils of vastus lateralis (VL) muscle in young adult and old African green vervet monkeys. Animals were offered the same diet and lived in the same enclosures during development, so we were able to examine skeletal muscle function in vivo and in vitro with fewer potential confounding factors than are typical in human research studies. Fiber atrophy alone did not account for the age-related differences in specific force and maximal power output. Regression modeling used to identify factors contributing to lower fiber force revealed that age is the strongest predictor. Our results support a detrimental effect of aging on the intrinsic force and power generation of myofilament lattice and physical performance in vervet monkeys.

0 Followers
 · 
93 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Specific alterations in the pulsatility of luteinizing hormone (LH) are linked to obesity-related subfertility in ovulatory women. Vervet monkeys (Chlorocebus aethiops sabaeus) are an Old World nonhuman primate that develops obesity and has a menstrual cycle similar to humans. We evaluated follicular-phase LH pulses in 12 adult normal-weight female vervets. Serum was collected every 10 min for 4 h by using a tether device in conscious, freely moving monkeys on menstrual cycle days 2 through 5. Serum estradiol was collected daily during the follicular phase to identify the luteal-follicular transition. For comparison, we used data from 12 ovulatory normal-weight women who had undergone frequent blood sampling of early-follicular LH. LH pulse frequency was similar, with 2.8 ± 0.7 LH pulses during 4 h in vervets compared with 2.3 ± 0.7 LH pulses during 4 h in women. The LH pulse mass (percentage change in the pulse peak over the preceding nadir) was 123.2% ± 27.4% in vervets and 60.9% ± 14.9% in humans. The first day of low serum estradiol after the follicular-phase peak was denoted as the day of the luteal-follicular transition. Luteectomy was performed on luteal days 7 through 9, and corpora lutea were confirmed by histology. We demonstrate that follicular LH patterns in vervets are similar to those in humans and that the luteal phase is easily identified by monitoring daily serum estradiol. These findings demonstrate that vervet monkeys are a suitable animal model for evaluating LH pulse dynamics longitudinally in studies of diet-induced obesity.
    Comparative medicine 01/2013; 63(5):432-8. · 0.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regular exercise, particularly resistance training (RT), is the only therapy known to consistently improve muscle strength and quality (force per unit of mass) in older persons, but there is considerable variability in responsiveness to training. Identifying sensitive diagnostic biomarkers of responsiveness to RT may inform the design of a more efficient exercise regimen to improve muscle strength in older adults. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. We quantified six muscle specific miRNAs (miR-1, -133a, -133b, -206, -208b and -499) in both muscle tissue and blood plasma, and their relationship with knee extensor strength in seven older (age=70.5±2.5years) adults before and after 5months of RT. MiRNAs differentially responded to RT; muscle miR-133b decreased, while all plasma miRNAs tended to increase. Percent changes in knee extensor strength with RT showed strong positive correlations with percent changes in muscle miR-133a, -133b, and -206 and with percent changes in plasma and plasma/muscle miR-499 ratio. Baseline level of plasma or plasma/muscle miR-499 ratio further predicts muscle response to RT, while changes in muscle miR-133a, -133b, and -206 may correlate with muscle TNNT1 gene alternative splicing in response to RT. Our results indicate that RT alters muscle specific miRNAs in muscle and plasma, and that these changes account for some of the variation in strength responses to RT in older adults. Copyright © 2014. Published by Elsevier Inc.
    Experimental Gerontology 01/2015; 62. DOI:10.1016/j.exger.2014.12.014 · 3.53 Impact Factor