Article

15q11.2 proximal imbalances associated with a diverse array of neuropsychiatric disorders and mild dysmorphic features.

*Section of Neurology, Children's Mercy Hospitals and Clinics and University of Missouri-Kansas City School of Medicine, Kansas City, MO †Section of Developmental and Behavioral Science, Children's Mercy Hospitals and Clinics and University of Missouri-Kansas City School of Medicine, Kansas City, MO ‡Department of Pathology, Children's Mercy Hospitals and Clinics and University of Missouri-Kansas City School of Medicine, Kansas City, MO.
Journal of developmental and behavioral pediatrics: JDBP (Impact Factor: 2.12). 08/2012; 33(7):570-6. DOI: 10.1097/DBP.0b013e31826052ae
Source: PubMed

ABSTRACT Deletion within the proximal region of chromosome 15q11.2 between breakpoints 1 and 2 (BP1-BP2) has been proposed to be a risk factor for intellectual disability, seizure, and schizophrenia. However, the clinical significance of its reciprocal duplication is not clearly defined yet. We evaluated 1654 consecutive pediatric patients with various neurological disorders by high-resolution microarray-based comparative genomic hybridization. We identified 21 patients carrying 15q11.2 BP1-BP2 deletion and 12 patients carrying 15q11.2 BP1-BP2 duplication in this cohort, which represent 1.27% (21/1,654) and 0.7% (12/1,654) of the patients analyzed, respectively. Approximately 87.5% of the patients carrying the deletion and 80% of the patients carrying the duplication have developmental delay or intellectual disability. Other recurrent clinical features in these patients include mild dysmorphic features, autistic spectrum disorders, and epilepsy. Our observations provide further evidence in favor of a strong association of 15q11.2 BP1-BP2 deletion with a variety of neuropsychiatric disorders. The diversity of clinical findings in these patients expands the phe-notypic spectrum of individuals carrying the deletion. In addition, possible etiological effects of 15q11.2 BP1-BP2 duplication in neuropsychiatric disorders are proposed.

0 Bookmarks
 · 
389 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is a chronic and severe psychiatric disorder that is highly heritable. While both common and rare genetic variants contribute to disease risk, many questions still remain about disease etiology. We performed a genome-wide analysis of copy number variants (CNVs) in 166 schizophrenia subjects and 52 psychiatrically healthy controls. First, overall CNV characteristics were compared between cases and controls. The only statistically significant finding was that deletions comprised a greater proportion of CNVs in cases. High interest CNVs were then identified as conservative using the following filtering criteria: (i) known deleterious CNVs; (ii) CNVs >1 Mb that were novel (not found in a database of control individuals); and (iii) CNVs <1 Mb that were novel and that overlapped the coding region of a gene of interest. Cases did not harbor a higher proportion of conservative CNVs in comparison to controls. However, similar to previous reports, cases had a slightly higher proportion of individuals with clinically significant CNVs (known deleterious or conservative CNVs >1 Mb) or with multiple conservative CNVs. Two case individuals with the highest burden of conservative CNVs also share a recurrent 15q11.2 BP1-2 deletion, indicating a role for a potential multiple-hit CNV model for schizophrenia. In total, we report three 15q11.2 BP1-2 deletion individuals with schizophrenia, adding to a growing body of evidence that this CNV is involved in disease etiology. © 2014 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part B Neuropsychiatric Genetics 09/2014; · 3.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adolescent idiopathic scoliosis (AIS) is a complex genetic disorder that causes spinal deformity in approximately 3% of the population. Candidate gene, linkage, and genome-wide association studies have sought to identify genetic variation that predisposes individuals to AIS, but the genetic basis remains unclear. Copy number variants are associated with several isolated skeletal phenotypes, but their role in AIS, to our knowledge, has not been assessed.
    Clinical Orthopaedics and Related Research 07/2014; 472(10). · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The proximal region of chromosome 15 is one of the genomic hotspots for copy number variants (CNVs). Among the rearrangements observed in this region, CNVs from the interval between the common breakpoints 1 and 2 (BP1 and BP2) have been reported cosegregating with autism spectrum disorder (ASD). Although evidence supporting an association between BP1-BP2 CNVs and autism accumulates, the magnitude of the effect of BP1-BP2 CNVs remains elusive, posing a great challenge to recurrence-risk counseling. To gain further insight into their pathogenicity for ASD, we estimated the penetrance of the BP1-BP2 CNVs for ASD as well as their effects on ASD-related phenotypes in a well-characterized ASD sample (n = 2525 families). Transmission disequilibrium test revealed significant preferential transmission only for the duplicated chromosome in probands (20T:9NT). The penetrance of the BP1-BP2 CNVs for ASD was low, conferring additional risks of 0.3% (deletion) and 0.8% (duplication). Stepwise regression analyses suggest a greater effect of the CNVs on ASD-related phenotype in males and when maternally inherited. Taken together, the results are consistent with BP1-BP2 CNVs as risk factors for autism. However, their effect is modest, more akin to that seen for common variants. To be consistent with the current American College of Medical Genetics guidelines for interpretation of postnatal CNV, the BP1-BP2 deletion and duplication CNVs would probably best be classified as variants of uncertain significance (VOUS): they appear to have an impact on risk, but one so modest that these CNVs do not merit pathogenic status. Autism Res 2014, ●: ●●–●●. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.
    Autism Research 06/2014; · 3.99 Impact Factor

Full-text

Download
422 Downloads
Available from
May 31, 2014