15q11.2 Proximal Imbalances Associated With a Diverse Array of Neuropsychiatric Disorders and Mild Dysmorphic Features

*Section of Neurology, Children's Mercy Hospitals and Clinics and University of Missouri-Kansas City School of Medicine, Kansas City, MO †Section of Developmental and Behavioral Science, Children's Mercy Hospitals and Clinics and University of Missouri-Kansas City School of Medicine, Kansas City, MO ‡Department of Pathology, Children's Mercy Hospitals and Clinics and University of Missouri-Kansas City School of Medicine, Kansas City, MO.
Journal of developmental and behavioral pediatrics: JDBP (Impact Factor: 2.13). 08/2012; 33(7):570-6. DOI: 10.1097/DBP.0b013e31826052ae
Source: PubMed


Deletion within the proximal region of chromosome 15q11.2 between breakpoints 1 and 2 (BP1-BP2) has been proposed to be a risk factor for intellectual disability, seizure, and schizophrenia. However, the clinical significance of its reciprocal duplication is not clearly defined yet. We evaluated 1654 consecutive pediatric patients with various neurological disorders by high-resolution microarray-based comparative genomic hybridization. We identified 21 patients carrying 15q11.2 BP1-BP2 deletion and 12 patients carrying 15q11.2 BP1-BP2 duplication in this cohort, which represent 1.27% (21/1,654) and 0.7% (12/1,654) of the patients analyzed, respectively. Approximately 87.5% of the patients carrying the deletion and 80% of the patients carrying the duplication have developmental delay or intellectual disability. Other recurrent clinical features in these patients include mild dysmorphic features, autistic spectrum disorders, and epilepsy. Our observations provide further evidence in favor of a strong association of 15q11.2 BP1-BP2 deletion with a variety of neuropsychiatric disorders. The diversity of clinical findings in these patients expands the phe-notypic spectrum of individuals carrying the deletion. In addition, possible etiological effects of 15q11.2 BP1-BP2 duplication in neuropsychiatric disorders are proposed.

Download full-text


Available from: Jean-Baptiste Le Pichon,
  • Source
    • "Previous publications have reported patients with 15q11.2 microdeletion between BP1 and BP2 presenting with developmental delay, speech impairment, learning disabilities and/or behavioural issues [Abdelmoity et al., 2012; Burnside et al., 2011; Doornbos et al., 2009; Madrigal et al., 2012; Murthy et al., 2007; Sempere Pérez et al., 2011; von der Lippe et al., 2011]. Nevertheless, several patients harboured another associated genetic alteration and added confusion to genotypeephenotype correlations. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Proximal region of chromosome 15 long arm is rich in duplicons that, define five breakpoints (BP) for 15q rearrangements. 15q11.2 microdeletion between BP1 and BP2 has been previously associated with developmental delay and atypical psychological patterns. This region contains four highly-conserved and non-imprinted genes: NIPA1, NIPA2, CYFIP1, TUBGCP5. Our goal was to investigate the phenotypes associated with this microdeletion in a cohort of 52 patients. This copy number variation (CNV) was prevalent in 0.8% patients presenting with developmental delay, psychological pattern issues and/or multiple congenital malformations. This was studied by array-CGH at six different French Genetic laboratories. We collected data from 52 unrelated patients (including 3 foetuses) after excluding patients with an associated genetic alteration (known CNV, aneuploidy or known monogenic disease). Out of 52 patients, mild or moderate developmental delay was observed in 68.3%, 85.4% had speech impairment and 63.4% had psychological issues such as Attention Deficit and Hyperactivity Disorder, Autistic Spectrum Disorder or Obsessive-Compulsive Disorder. Seizures were noted in 18.7% patients and associated congenital heart disease in 17.3%. Parents were analysed for abnormalities in the region in 65.4% families. Amongst these families, `de novo` microdeletions were observed in 18.8% and 81.2% were inherited from one of the parents. Incomplete penetrance and variable expressivity were observed amongst the patients. Our results support the hypothesis that 15q11.2 (BP1-BP2) microdeletion is associated with developmental delay, abnormal behaviour, generalized epilepsy and congenital heart disease. The later feature has been rarely described. Incomplete penetrance and variability of expression demands further assessment and studies. Copyright © 2015. Published by Elsevier Masson SAS.
    European Journal of Medical Genetics 01/2015; 58(3). DOI:10.1016/j.ejmg.2015.01.002 · 1.47 Impact Factor
  • Source
    • "Symptom constellations, disease severity, and associated biological traits can differ markedly from one affected individual to another. This is true even in cases attributable to single genetic defects such as chromosome 15q11-13 duplications [1] or 16p11.2 deletions [2]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism and the fragile X syndrome (FXS) are related to each other genetically and symptomatically. A cardinal biological feature of both disorders is abnormalities of cerebral cortical brain volumes. We have previously shown that the monoamine oxidase A (MAOA) promoter polymorphism is associated with cerebral cortical volumes in children with autism, and we now sought to determine whether the association was also present in children with FXS. Participants included 47 2-year-old Caucasian boys with FXS, some of whom also had autism, as well as 34 2-year-old boys with idiopathic autism analyzed in a previous study. The MAOA promoter polymorphism was genotyped and tested for relationships with gray and white matter volumes of the cerebral cortical lobes and cerebro-spinal fluid volume of the lateral ventricles. MAOA genotype effects in FXS children were the same as those previously observed in idiopathic autism: the low activity MAOA promoter polymorphism allele was associated with increased gray and white matter volumes in all cerebral lobes. The effect was most pronounced in frontal lobe gray matter and all three white matter regions: frontal gray, F = 4.39, P = 0.04; frontal white, F = 5.71, P = 0.02; temporal white, F = 4.73, P = 0.04; parieto-occipital white, F = 5.00, P = 0.03. Analysis of combined FXS and idiopathic autism samples produced P values for these regions <0.01 and effect sizes of approximately 0.10. The MAOA promoter polymorphism is similarly associated with brain structure volumes in both idiopathic autism and FXS. These data illuminate a number of important aspects of autism and FXS heritability: a genetic effect on a core biological trait of illness, the specificity/generalizability of the genetic effect, and the utility of examining individual genetic effects on the background of a single gene disorder such as FXS.
    Journal of Neurodevelopmental Disorders 03/2014; 6(1):6. DOI:10.1186/1866-1955-6-6 · 3.27 Impact Factor
  • Source
    • "microdeletion syndrome [1, 4, 5]. Heart defects have previously been reported [4, 5]. It should be noted that these two cases do not fit another recognizable genetic syndrome. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The proximal q arm of chromosome 15 contains breakpoint regions BP1-BP5 with the classic deletion of BP1-BP3 best known to be associated with Prader-Willi and Angelman syndromes. The region is approximately 500 kb and microdeletions within the BP1-BP2 region have been reported in patients with developmental delay, behavioral abnormalities, and motor apraxia as well as dysmorphic features including hypertelorism, cleft or narrow palate, ear abnormalities, and recurrent upper airway infections. We report two patients with unique, never-before-reported 15q11.2 BP1-2 microdeletion syndrome findings, one with proximal esophageal atresia and distal tracheoesophageal fistula (type C) and one with congenital cataracts. Cataracts have been described in Prader-Willi syndrome but we could not find any description of cataracts in Angelman syndrome. Esophageal atresia and tracheoesophageal fistula have not been reported to our knowledge in either syndrome. A chance exists that both cases are sporadic birth defects; however, the findings of the concomitant microdeletion cannot be overlooked as a possible cause. Based on our review of the literature and the presentation of our patients, we recommend that esophageal atresia and distal tracheoesophageal fistula as well as congenital cataracts be included in the phenotypic spectrum of 15q11.2 BP1-2 microdeletion syndrome.
    06/2013; 2013(7):801094. DOI:10.1155/2013/801094
Show more