Article

Reversal by RARα agonist Am580 of c-Myc-induced imbalance in RARα/RARγ expression during MMTV-Myc tumorigenesis

Breast cancer research: BCR (Impact Factor: 5.88). 08/2012; 14(4):R121. DOI: 10.1186/bcr3247
Source: PubMed

ABSTRACT INTRODUCTION: Retinoic acid signaling plays key roles in embryonic development and in maintaining the differentiated status of adult tissues. Recently, the nuclear retinoic acid receptor (RAR) isotypes , and were found to play specific functions in the expansion and differentiation of the stem compartments of various tissues. For instance, RAR appears to be involved in stem cell compartment expansion, while RAR and RAR are implicated in the subsequent cell differentiation. We found that over-expressing c-Myc in normal mouse mammary epithelium and in a c-Myc-driven transgenic model of mammary cancer, disrupts the balance between RAR and RARin favor of RAR. METHODS: The effects of c-Myc on RAR isotype expression were evaluated in normal mouse mammary epithelium, mammary tumor cells obtained from the MMTV-Myc transgenic mouse model as well human normal immortalized breast epithelial and breast cancer cell lines. The in vivo effect of the RAR-selective agonist 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthyl)carboxamido]benzoic acid (Am580) was examined in the mouse mammary tumor virus (MMTV)-Myc mouse model of mammary tumorigenesis. RESULTS: Modulation of the RARtoRAR expression in mammary glands of normal mice, oncomice, and human mammary cell lines through the alteration of RAR-target gene expression affected cell proliferation, survival and tumor growth. Treatment of MMTV-Myc mice with the RAR-selective agonist Am580 led to significant inhibition of mammary tumor growth (~90%, P<0.001), lung metastasis (P<0.01) and extended tumor latency in 63% of mice. Immunocytochemical analysis showed that in these mice, RARresponsive genes such as Cyp26A1, E-cadherin, cellular retinol-binding protein 1 (CRBP1) and p27, were up-regulated. In contrast, the mammary gland tumors of mice that responded poorly to Am580 treatment (37%) expressed significantly higher levels of RAR In vitro experiments indicated that the rise in RAR was functionally linked to promotion of tumor growth and inhibition of differentiation. Thus, activation of the RAR pathway is linked to tumor growth inhibition, differentiation and cell death. CONCLUSIONS: The functional consequence of the interplay between c-Myc oncogene expression and the RARto RAR balance suggests that prevalence of RAR over RARexpression levels in breast cancer accompanied by c-Myc amplification or over-expression in breast cancer should be predictive of response to treatment with RAR-isotype specific agonists and warrant monitoring during clinical trials.

Download full-text

Full-text

Available from: Eduardo F Farias, Jan 30, 2014
0 Followers
 · 
116 Views
  • Source
    • "RARc is part of a gene-signature associated with mammary tumors [37] and it provides a pro-oncogenic signal in a c-Myc-driven transgenic model of mammary cancer [38] [39]. In addition, RARc favors the self-renewal and expansion of hematopoietic stem cells [40] and may exert a similar effect in the breast cancer counterparts [29] [38]. These observations indicate that activation of RARc supports the growth/progression of mammary tumors with implications for the therapeutic use of ATRA. "
    [Show abstract] [Hide abstract]
    ABSTRACT: All-trans retinoic acid (ATRA) is the most important active metabolite of vitamin A controlling segmentation in the developing organism and the homeostasis of various tissues in the adult. ATRA as well as natural and synthetic derivatives, collectively known as retinoids, are also promising agents in the treatment and chemoprevention of different types of neoplasia including breast cancer. The major aim of the present article is to review the basic knowledge acquired on the anti-tumor activity of classic retinoids, like ATRA, in mammary tumors, focusing on the underlying cellular and molecular mechanisms and the determinants of retinoid sensitivity/resistance. In the first part, an analysis of the large number of pre-clinical studies available is provided, stressing the point that this has resulted in a limited number of clinical trials. This is followed by an overview of the knowledge acquired on the role played by the retinoid nuclear receptors in the anti-tumor responses triggered by retinoids. The body of the article emphasizes the potential of ATRA and derivatives in modulating and in being influenced by some of the most relevant cellular pathways involved in the growth and progression of breast cancer. We review the studies centering on the cross-talk between retinoids and some of the growth-factor pathways which control the homeostasis of the mammary tumor cell. In addition, we consider the cross-talk with relevant intra-cellular second messenger pathways. The information provided lays the foundation for the development of rational and retinoid-based therapeutic strategies to be used for the management of breast cancer.
    Cancer Treatment Reviews 01/2014; 40(6). DOI:10.1016/j.ctrv.2014.01.001 · 6.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: All-trans retinoic acid and derivatives (retinoids) are promising agents in the management of certain hematologic malignancies and solid tumors, including breast cancer. Retinoids are endowed with anti-proliferative, cyto-differentiating and apoptotic effects that are largely mediated by activation of the nuclear hormone retinoic acid receptors RARα, RARβ and RARγ. These are ligand-dependent transcriptional factors controlling the expression of numerous genes. The relative importance of each receptor subtype for the anti-tumor activity of retinoids is largely unknown. Clarification of this point is of fundamental importance for the rational design of retinoid-based therapeutic approaches aimed at controlling a heterogeneous type of tumors, like breast cancer.
    Breast cancer research: BCR 09/2012; 14(5):111. DOI:10.1186/bcr3245 · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here, we present the first volume of a multi-volume series on Retinoic Acid Signaling that will cover all aspects of this broad and diverse field. One aim of Volume I is to present a compilation of topics related to the biochemistry of nuclear retinoic acid receptors, from their architecture when bound to DNA and associated with their coregulators to their ability to regulate target gene transcription. A second aim is to provide insight into recent advances that have been made in identifying novel targets and non-genomic effects of retinoic acid. Volume I is divided into ten chapters contributed by prominent experts in their respective fields. Each chapter starts with the history of the area of research. Then, the key findings that contributed to development of the field are described, followed by a detailed look at key findings and progress that are being made in current, ongoing research. Each chapter is concluded with a discussion of the relevance of the research and a perspective on missing pieces and lingering gaps that the author recommends will be important in defining future directions in vitamin A research.
    The Biochemistry of Retinoic Acid Receptors I: Structure, Activation, and Function at the Molecular Level, Edited by Mary Ann Asson-Batres, Cécile Rochette-Egly, 07/2014: chapter 7; Springer., ISBN: 978-94-017-9049-9