Mechanisms and evolution of virulence in oomycetes.

The Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA.
Annual Review of Phytopathology (Impact Factor: 11). 09/2012; 50:295-318. DOI: 10.1146/annurev-phyto-081211-172912
Source: PubMed

ABSTRACT Many destructive diseases of plants and animals are caused by oomycetes, a group of eukaryotic pathogens important to agricultural, ornamental, and natural ecosystems. Understanding the mechanisms underlying oomycete virulence and the genomic processes by which those mechanisms rapidly evolve is essential to developing effective long-term control measures for oomycete diseases. Several common mechanisms underlying oomycete virulence, including protein toxins and cell-entering effectors, have emerged from comparing oomycetes with different genome characteristics, parasitic lifestyles, and host ranges. Oomycete genomes display a strongly bipartite organization in which conserved housekeeping genes are concentrated in syntenic gene-rich blocks, whereas virulence genes are dispersed into highly dynamic, repeat-rich regions. There is also evidence that key virulence genes have been acquired by horizontal transfer from other eukaryotic and prokaryotic species.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Progressive increase in extracellular proteolytic activity with respect to growth was detected in cultures of necrotrophic oomycete Pythium myriotylum Dreschler with maximum activity detected at stationary phase of growth. The secretory protease from P. myriotylum designated, spPm1 was purified to homogeneity giving a single band of 47 kDa molecular mass on non-reducing SDS-PAGE and exhibiting caseinolytic activity in the zymogram. Under reducing conditions, an additional band of 27.0 kDa molecular size observed was subjected to matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) analysis. Resulting peptide identified as an autolytic product and generated under reducing conditions on SDS-PAGE, showed homology to domains of oomycete effector molecules. spPm1 retained proteolytic activity over broad pH (5.0-12.0) and temperature (10-80 °C) ranges with optimal pH and temperature at 8.0 and 60 °C respectively. spPm1 was identified as a serine protease following experiments with inhibitors specific to various protease groups. spPm1 displayed high stability to surfactants, organic solvents, oxidizing agents and to metal-ion chelator, EDTA. Kinetic parameters, Km and Vmax were determined as 0.04 mM and 7.52 U min(-1) mg(-1) respectively. Preferential hydrolysis of synthetic fluorogenic substrate, SAAPPPA (N-succinyl-L-alanyl-alanyl-proline-phenylalanine-p-nitroanilide) confirmed spPm1 as belonging to subtilisin serine protease family. The excellent stability of spPm1 protease characterized from P. myriotylum is discussed with respect to its potential industrial applications.
    World Journal of Microbiology and Biotechnology 11/2014; · 1.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A critical aspect of plant infection by the majority of pathogens is penetration of the plant cell wall. This process requires the production and secretion of a broad spectrum of pathogen enzymes that target and degrade the many complex polysaccharides in the plant cell wall. As a necessary framework for a study of the expression of cell wall degrading enzymes (CWDEs) produced by the broad host range phytopathogen, Phytophthora parasitica, we have conducted an in-depth bioinformatics analysis of the entire complement of genes encoding CWDEs in this pathogen's genome.
    BMC Genomics 09/2014; 15(1):785. · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plant pathogens display impressive versatility in adapting to host immune systems. Pathogen effector proteins facilitate disease but can become avirulence (Avr) factors when the host acquires discrete recognition capabilities that trigger immunity. The mechanisms that lead to changes to pathogen Avr factors that enable escape from host immunity are diverse, and include epigenetic switches that allow for reuse or recycling of effectors. This perspective outlines possibilities of how epigenetic control of Avr effector gene expression may have arisen and persisted in filamentous plant pathogens, and how it presents special problems for diagnosis and detection of specific pathogen strains or pathotypes.
    Frontiers in Plant Science 11/2014; 5:638. · 3.64 Impact Factor