Transformation with Oligonucleotides Creating Clustered Changes in the Yeast Genome

Department of Biology, Emory University, Atlanta, Georgia, USA.
PLoS ONE (Impact Factor: 3.53). 08/2012; 7(8):e42905. DOI: 10.1371/journal.pone.0042905
Source: PubMed

ABSTRACT We have studied single-strand oligonucleotide (oligo) transformation of yeast by using 40-nt long oligos that create multiple base changes to the yeast genome spread throughout the length of the oligos, making it possible to measure the portions of an oligo that are incorporated during transformation. Although the transformation process is greatly inhibited by DNA mismatch repair (MMR), the pattern of incorporation is essentially the same in the presence or absence of MMR, whether the oligo anneals to the leading or lagging strand of DNA replication, or whether phosphorothioate linkages are used at either end. A central core of approximately 15 nt is incorporated with a frequency of >90%; the ends are incorporated with a lower frequency, and loss of the two ends appears to be by different mechanisms. Bases that are 5-10 nt from the 5' end are generally lost with a frequency of >95%, likely through a process involving flap excision. On the 3' end, bases 5-10 nt from the 3' end are lost about 1/3 of the time. These results indicate that oligos can be used to create multiple simultaneous changes to the yeast genome, even in the presence of MMR.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA mismatch repair greatly increases genome fidelity by recognizing and removing replication errors. In order to understand how this fidelity is maintained, it is important to uncover the relative specificities of the different components of mismatch repair. There are two major mispair recognition complexes in eukaryotes that are homologues of bacterial MutS proteins, MutSα and MutSβ, with MutSα recognizing base-base mismatches and small loop mispairs and MutSβ recognizing larger loop mispairs. Upon recognition of a mispair, the MutS complexes then interact with homologues of the bacterial MutL protein. Loops formed on the primer strand during replication lead to insertion mutations, whereas loops on the template strand lead to deletions. We show here in yeast, using oligonucleotide transformation, that MutSα has a strong bias toward repair of insertion loops, while MutSβ has an even stronger bias toward repair of deletion loops. Our results suggest that this bias in repair is due to the different interactions of the MutS complexes with the MutL complexes. Two mutants of MutLα, pms1-G882E and pms1-H888R, repair deletion mispairs but not insertion mispairs. Moreover, we find that a different MutL complex, MutLγ, is extremely important, but not sufficient, for deletion repair in the presence of either MutLα mutation. MutSβ is present in many eukaryotic organisms, but not in prokaryotes. We suggest that the biased repair of deletion mispairs may reflect a critical eukaryotic function of MutSβ in mismatch repair.
    PLoS Genetics 10/2013; 9(10):e1003920. DOI:10.1371/journal.pgen.1003920 · 8.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-frequency oligonucleotide-directed recombination engineering (recombineering) has enabled rapid modification of several prokaryotic genomes to date. Here, we present a method for oligonucleotide-mediated recombineering in the model eukaryote and industrial production host S. cerevisiae, which we call Yeast Oligo-mediated Genome Engineering (YOGE). Through a combination of overexpression and knockouts of relevant genes and optimization of transformation and oligonucleotide designs, we achieve high gene modification frequencies at levels that only require screening of dozens of cells. We demonstrate the robustness of our approach in three divergent yeast strains, including those involved in industrial production of bio-based chemicals. Furthermore, YOGE can be iteratively executed via cycling to generate genomic libraries up to 105 individuals at each round for diversity generation. YOGE cycling alone, or in combination with phenotypic selections or endonuclease-based negative genotypic selections, can be used to easily generate modified alleles in yeast populations with high frequencies.
    ACS Synthetic Biology 10/2013; 2(12). DOI:10.1021/sb400117c · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is now well established that in yeast, and likely most eukaryotic organisms, initial DNA replication of the leading strand is by DNA polymerase ε and of the lagging strand by DNA polymerase δ. However, the role of Pol δ in replication of the leading strand is uncertain. In this work, we use a reporter system in Saccharomyces cerevisiae to measure mutation rates at specific base pairs in order to determine the effect of heterozygous or homozygous proofreading-defective mutants of either Pol ε or Pol δ in diploid strains. We find that wild-type Pol ε molecules cannot proofread errors created by proofreading-defective Pol ε molecules, whereas Pol δ can not only proofread errors created by proofreading-defective Pol δ molecules, but can also proofread errors created by Pol ε-defective molecules. These results suggest that any interruption in DNA synthesis on the leading strand is likely to result in completion by Pol δ and also explain the higher mutation rates observed in Pol δ-proofreading mutants compared to Pol ε-proofreading defective mutants. For strains reverting via AT→GC, TA→GC, CG→AT, and GC→AT mutations, we find in addition a strong effect of gene orientation on mutation rate in proofreading-defective strains and demonstrate that much of this orientation dependence is due to differential efficiencies of mispair elongation. We also find that a 3'-terminal 8 oxoG, unlike a 3'-terminal G, is efficiently extended opposite an A and is not subject to proofreading. Proofreading mutations have been shown to result in tumor formation in both mice and humans; the results presented here can help explain the properties exhibited by those proofreading mutants.
    PLoS Genetics 03/2015; 11(3):e1005049. DOI:10.1371/journal.pgen.1005049 · 8.17 Impact Factor

Full-text (3 Sources)

Available from
May 15, 2014