Article

Eilat virus, a unique alphavirus with host range restricted to insects by RNA replication.

Institute for Human Infections and Immunity and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 08/2012; 109(36):14622-7. DOI: 10.1073/pnas.1204787109
Source: PubMed

ABSTRACT Most alphaviruses and many other arboviruses are mosquito-borne and exhibit a broad host range, infecting many different vertebrates including birds, rodents, equids, humans, and nonhuman primates. Consequently, they can be propagated in most vertebrate and insect cell cultures. This ability of arboviruses to infect arthropods and vertebrates is usually essential for their maintenance in nature. However, several flaviviruses have recently been described that infect mosquitoes but not vertebrates, although the mechanism of their host restriction has not been determined. Here we describe a unique alphavirus, Eilat virus (EILV), isolated from a pool of Anopheles coustani mosquitoes from the Negev desert of Israel. Phylogenetic analyses placed EILV as a sister to the Western equine encephalitis antigenic complex within the main clade of mosquito-borne alphaviruses. Electron microscopy revealed that, like other alphaviruses, EILV virions were spherical, 70 nm in diameter, and budded from the plasma membrane of mosquito cells in culture. EILV readily infected a variety of insect cells with little overt cytopathic effect. However, in contrast to typical mosquito-borne alphaviruses, EILV could not infect mammalian or avian cell lines, and viral as well as RNA replication could not be detected at 37 °C or 28 °C. Evolutionarily, these findings suggest that EILV lost its ability to infect vertebrate cells. Thus, EILV seems to be mosquito-specific and represents a previously undescribed complex within the genus Alphavirus. Reverse genetic studies of EILV may facilitate the discovery of determinants of alphavirus host range that mediate disease emergence.

0 Followers
 · 
120 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, there has been a dramatic increase in the detection and characterization of insect-specific viruses in field-collected mosquitoes. Evidence suggests that these viruses are ubiquitous in nature and that many are maintained by vertical transmission in mosquito populations. Some studies suggest that the presence of insect-specific viruses may inhibit replication of a super-infecting arbovirus, thus altering vector competence of the mosquito host. Accordingly, we screened our laboratory mosquito colonies for insect-specific viruses. Pools of colony mosquitoes were homogenized and inoculated into cultures of Aedes albopictus (C6/36) cells. The infected cells were examined by electron microscopy and deep sequencing was performed on RNA extracts. Electron micrograph images indicated the presence of three different viruses in three of our laboratory mosquito colonies. Potential implications of these findings for vector competence studies are discussed. © The American Society of Tropical Medicine and Hygiene.
    The American journal of tropical medicine and hygiene 12/2014; 92(2). DOI:10.4269/ajtmh.14-0330 · 2.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Most alphaviruses are arthropod-borne and utilize mosquitoes as vectors for transmission to susceptible vertebrate hosts. This ability to infect both mosquitoes and vertebrates is essential for maintenance of most alphaviruses in nature. A recently characterized alphavirus, Eilat virus (EILV), isolated from a pool of Anopheles coustani s.I. is unable to replicate in vertebrate cell lines. The EILV host range restriction occurs at both attachment/entry as well as genomic RNA replication levels. Here we investigated the mosquito vector range of EILV in species encompassing three genera that are responsible for maintenance of other alphaviruses in nature.Materials and methodsSusceptibility studies were performed in four mosquito species: Aedes albopictus, A. aegypti, Anopheles gambiae, and Culex quinquefasciatus via intrathoracic and oral routes utilizing EILV and EILV expressing red fluorescent protein (¿eRFP) clones. EILV-eRFP was injected at 107 PFU/mL to visualize replication in various mosquito organs at 7 days post-infection. Mosquitoes were also injected with EILV at 104-101 PFU/mosquito and virus replication was measured via plaque assays at day 7 post-infection. Lastly, mosquitoes were provided bloodmeals containing EILV-eRFP at doses of 109, 107, 105 PFU/mL, and infection and dissemination rates were determined at 14 days post-infection.ResultsAll four species were susceptible via the intrathoracic route; however, replication was 10¿100 fold less than typical for most alphaviruses, and infection was limited to midgut-associated muscle tissue and salivary glands. A. albopictus was refractory to oral infection, while A. gambiae and C. quinquefasciatus were susceptible only at 109 PFU/mL dose. In contrast, A. aegypti was susceptible at both 109 and 107 PFU/mL doses, with body infection rates of 78% and 63%, and dissemination rates of 26% and 8%, respectively.Conclusions The exclusion of vertebrates in its maintenance cycle may have facilitated the adaptation of EILV to a single mosquito host. As a consequence, EILV displays a narrow vector range in mosquito species responsible for the maintenance of other alphaviruses in nature.
    Parasites & Vectors 12/2014; 7(1):595. DOI:10.1186/PREACCEPT-1744111847135958 · 3.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The non-coding regions found at the 5’ and 3’ ends of alphavirus genomes regulate viral gene expression, replication, translation and virus-host interactions, which have significant implications for viral evolution, host range, and pathogenesis. The functions of these non-coding regions are mediated by a combination of linear sequence and structural elements. The capped 5’ untranslated region (UTR) contains promoter elements, translational regulatory sequences that modulate dependence on cellular translation factors, and structures that help to avoid innate immune defenses. The polyadenylated 3’ UTR contains highly conserved sequence elements for viral replication, binding sites for cellular miRNAs that determine cell tropism, host range, and pathogenesis, and conserved binding regions for a cellular protein that influences viral RNA stability. Nonetheless, there are additional conserved elements in non-coding regions of the virus (e.g., the repeated sequence elements in the 3’ UTR) whose function remains obscure. Thus, key questions remain as to the function of these short yet influential untranslated segments of alphavirus RNAs.
    Virus Research 01/2015; DOI:10.1016/j.virusres.2015.01.016 · 2.83 Impact Factor

Full-text (2 Sources)

Download
4 Downloads
Available from
Feb 20, 2015