Cytomegalovirus infection impairs immune responses and accentuates T-cell pool changes observed in mice with aging.

Department of Vaccinology and Applied Microbiology, Helmholtz Center for Infection Research, Braunschweig, Germany.
PLoS Pathogens (Impact Factor: 8.06). 08/2012; 8(8):e1002849. DOI: 10.1371/journal.ppat.1002849
Source: PubMed

ABSTRACT Prominent immune alterations associated with aging include the loss of naïve T-cell numbers, diversity and function. While genetic contributors and mechanistic details in the aging process have been addressed in multiple studies, the role of environmental agents in immune aging remains incompletely understood. From the standpoint of environmental infectious agents, latent cytomegalovirus (CMV) infection has been associated with an immune risk profile in the elderly humans, yet the cause-effect relationship of this association remains unclear. Here we present direct experimental evidence that mouse CMV (MCMV) infection results in select T-cell subset changes associated with immune aging, namely the increase of relative and absolute counts of CD8 T-cells in the blood, with a decreased representation of the naïve and the increased representation of the effector memory blood CD8 T-cells. Moreover, MCMV infection resulted in significantly weaker CD8 responses to superinfection with Influenza, Human Herpes Virus I or West-Nile-Virus, even 16 months following MCMV infection. These irreversible losses in T-cell function could not be observed in uninfected or in vaccinia virus-infected controls and were not due to the immune-evasive action of MCMV genes. Rather, the CD8 activation in draining lymph nodes upon viral challenge was decreased in MCMV infected mice and the immune response correlated directly to the frequency of the naïve and inversely to that of the effector cells in the blood CD8 pool. Therefore, latent MCMV infection resulted in pronounced changes of the T-cell compartment consistent with impaired naïve T-cell function.


Available from: Thomas F. Marandu, Jun 07, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hematopoietic stem cell transplantation from anti-cytomegalovirus immunoglobulin G (anti-CMV-IgG) positive donors facilitated immunological recovery post-transplant, which may indicate that chronic CMV infection has an effect on the immune system. This can be seen in the recipients after reconstitution with donor lymphocytes. We evaluated the composition of lymphocytes at hematologic recovery in 99 patients with hematologic malignancies post hematopoietic stem cell transplantation (HSCT). Anti-CMV-IgG seropositivity of the donor was associated with higher proportions of CD4+ (227.963 ± 304.858 × 106 vs. 102.050 ± 17.247 × 106 cells/L, p = 0.009) and CD4+CD25high (3.456 ± 0.436 × 106 vs. 1.589 ± 0.218 × 106 cells/L, p = 0.003) lymphocytes in the blood at hematologic recovery. The latter parameter exerted a diverse influence on the risk of acute graft-versus-host disease (GvHD) if low (1.483 ± 0.360 × 106 vs. 3.778 ± 0.484 × 106 cells/L, p < 0.001) and de novo chronic GvHD (cGvHD) if high (3.778 ± 0.780 × 106 vs. 2.042 ± 0.261 × 106 cells/L, p = 0.041). Higher values of CD4+ lymphocytes in patients who received transplants from anti-CMV-IgG-positive donors translated into a reduced demand for IgG support (23/63 vs. 19/33, p = 0.048), and these patients also exhibited reduced susceptibility to cytomegalovirus (CMV), Epstein-Barr virus (EBV) and/or human herpes 6 virus (HHV6) infection/reactivation (12/50 vs. 21/47, p = 0.032). Finally, high levels (³0.4%) of CD4+CD25high lymphocytes were significantly associated with better post-transplant survival (56% vs. 38%, four-year survival, p = 0.040). Donors who experience CMV infection/reactivation provide the recipients with lymphocytes, which readily reinforce the recovery of the transplanted patients' immune system.
    Viruses 03/2015; 7(3):1391-408. DOI:10.3390/v7031391 · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells play a key role in the host response to cytomegalovirus (CMV) and can mediate an enhanced response to secondary challenge with CMV. We assessed the ability of mouse CMV (MCMV)-induced memory Ly49H(+) NK cells to respond to challenges with influenza, an acute viral infection localized to the lung, and Listeria monocytogenes, a systemic bacterial infection. MCMV-memory NK cells did not display enhanced activation or proliferation after infection with influenza or Listeria, as compared with naive Ly49H(+) or Ly49H(-) NK cells. Memory NK cells also showed impaired activation compared with naive cells when challenged with a mutant MCMV lacking m157, highlighting their antigen-specific response. Ex vivo, MCMV-memory NK cells displayed reduced phosphorylation of STAT4 and STAT1 in response to stimulation by IL-12 and type I interferon (IFN), respectively, and IFN-γ production was reduced in response to IL-12 + IL-18 compared with naive NK cells. However, costimulation of MCMV-memory NK cells with IL-12 and m157 antigen rescues their impaired response compared with cytokines alone. These findings reveal that MCMV-primed memory NK cells are diminished in their response to cytokine-driven bystander responses to heterologous infections as they become specialized and antigen-specific for the control of MCMV upon rechallenge. © 2014 Min-Oo and Lanier.
    Journal of Experimental Medicine 11/2014; DOI:10.1084/jem.20141172 · 13.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytomegalovirus infection is associated with significant morbidity and mortality in immunocompromised patients, but its impact on immunocompetent patients is still poorly understood. Furthermore, there is increasing evidence implying that chronic infection may contribute to a heightened cardiovascular risk.
    BMC Research Notes 11/2014; 7(1):799. DOI:10.1186/1756-0500-7-799