Cytomegalovirus Infection Impairs Immune Responses and Accentuates T-cell Pool Changes Observed in Mice with Aging

Department of Vaccinology and Applied Microbiology, Helmholtz Center for Infection Research, Braunschweig, Germany.
PLoS Pathogens (Impact Factor: 7.56). 08/2012; 8(8):e1002849. DOI: 10.1371/journal.ppat.1002849
Source: PubMed


Prominent immune alterations associated with aging include the loss of naïve T-cell numbers, diversity and function. While genetic contributors and mechanistic details in the aging process have been addressed in multiple studies, the role of environmental agents in immune aging remains incompletely understood. From the standpoint of environmental infectious agents, latent cytomegalovirus (CMV) infection has been associated with an immune risk profile in the elderly humans, yet the cause-effect relationship of this association remains unclear. Here we present direct experimental evidence that mouse CMV (MCMV) infection results in select T-cell subset changes associated with immune aging, namely the increase of relative and absolute counts of CD8 T-cells in the blood, with a decreased representation of the naïve and the increased representation of the effector memory blood CD8 T-cells. Moreover, MCMV infection resulted in significantly weaker CD8 responses to superinfection with Influenza, Human Herpes Virus I or West-Nile-Virus, even 16 months following MCMV infection. These irreversible losses in T-cell function could not be observed in uninfected or in vaccinia virus-infected controls and were not due to the immune-evasive action of MCMV genes. Rather, the CD8 activation in draining lymph nodes upon viral challenge was decreased in MCMV infected mice and the immune response correlated directly to the frequency of the naïve and inversely to that of the effector cells in the blood CD8 pool. Therefore, latent MCMV infection resulted in pronounced changes of the T-cell compartment consistent with impaired naïve T-cell function.

Download full-text


Available from: Thomas F. Marandu,
  • Source
    • "It has been also shown that latent mouse CMV (MCMV) infection impairs immunity to other viruses in old age and increases the percentages and absolute numbers of CD8+ and effector-memory CD8+ T cells, thus contributing to immunosenescence [17], [18]. However, evidences from other studies in young mice have shown that latent MCMV infection contributes to immune protection against infection with unrelated pathogens [19], [20]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytomegalovirus (CMV) latent infection has a deleterious effect on the efficacy of influenza vaccination in the elderly, suggesting that CMV restricts immunological diversity impairing the immune system functionality in old age. Polyfunctional T cells produce multiple cytokines and higher amounts than mono-functional T cells. High number of polyfunctional T cells correlates with better prognosis during infection. Thus, the efficiency of T cell response associates with quality (polyfunctionality) rather than with quantity (percentage of T cells). We analyze the effect of CMV infection on CD8+ T cells polyfunctionality -degranulation (CD107a), IFN-gamma and TNF-alpha production-, from young CMV-seropositive and CMV-seronegative individuals and in middle age CMV-seropositive donors, in response to Staphylococcal Enterotoxin B (SEB). Our results show a higher percentage of polyfunctional CD8+ T cells in young CMV-seropositive individuals compared to CMV-seronegative. Also, we find an expansion of CD8+CD57+ T cells in CMV-seropositive individuals, which are more polyfunctional than CD8+CD57- cells. In middle age individuals there is a higher frequency of SEB-responding CD8+ T cells, mainly TNF-alpha or TNF-alpha/IFN-gamma producers, whereas the percentage of polyfunctional cells (IFN-gamma/TNF-alpha/CD107a) is similar to the percentages found in young CMV-seropositive. Therefore, whereas it has been shown that CMV latent infection can be detrimental for immune response in old individuals, our results indicate that CMV-seropositivity is associated to higher levels of polyfunctional CD8+ T cells in young and middle age donors. This increase in polyfunctionality, which can provide an immunological advantage in the response to other pathogens, is due to a CD8+CD57+ T cell expansion in CMV-seropositive individuals and it is independent of age. Conversely, age could contribute to the inflammation found in old individuals by increasing the percentage of cells producing pro-inflammatory cytokines. These findings highlight the necessity of further studies on the benefits/detrimental effects of CMV infection in the response to vaccination and other infections.
    PLoS ONE 02/2014; 9(2):e88538. DOI:10.1371/journal.pone.0088538 · 3.23 Impact Factor
  • Source
    • "Current evidence suggests that CMV infection is a pre-eminent agent driving the differentiation of the CD8+ T cell compartment with aging (73–75) as has also been shown in mice (45, 76, 77). As mentioned above, most of these CMV-specific CD8+ T cells are of TEMRA phenotype with decreased CD28, CD27, CCR7, CD62L, and increased CD57 and re-expressed CD45RA surface markers indicating some putative functional alteration (52). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging is associated with a dysregulation of the immune response, loosely termed "immunosenescence." Each part of the immune system is influenced to some extent by the aging process. However, adaptive immunity seems more extensively affected and among all participating cells it is the T cells that are most altered. There is a large body of experimental work devoted to the investigation of age-associated differences in T cell phenotypes and functions in young and old individuals, but few longitudinal studies in humans actually delineating changes at the level of the individual. In most studies, the number and proportion of late-differentiated T cells, especially CD8+ T cells, is reported to be higher in the elderly than in the young. Limited longitudinal studies suggest that accumulation of these cells is a dynamic process and does indeed represent an age-associated change. Accumulations of such late-stage cells may contribute to the enhanced systemic pro-inflammatory milieu commonly seen in older people. We do not know exactly what causes these observed changes, but an understanding of the possible causes is now beginning to emerge. A favored hypothesis is that these events are at least partly due to the effects of the maintenance of essential immune surveillance against persistent viral infections, notably Cytomegalovirus (CMV), which may exhaust the immune system over time. It is still a matter of debate as to whether these changes are compensatory and beneficial or pathological and detrimental to the proper functioning of the immune system and whether they impact longevity. Here, we will review present knowledge of T cell changes with aging and their relation to chronic viral and possibly other persistent infections.
    Frontiers in Immunology 09/2013; 4(article 271):271. DOI:10.3389/fimmu.2013.00271
  • Source
    • "Recent studies demonstrated that superinfections of β-herpesvirus infected mice with West Nile virus (WNV) or LCMV did not influence the outcome of the second infection [10,32,33]. There were no differences in the survival of naïve and γHV68-infected mice after WNV superinfection [10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Co-infection of HIV patients with cytomegalovirus (CMV) is associated with enhanced AIDS progression and CMV end-organ diseases. On the other hand, persistent CMV infection has recently been shown to decrease tumor relapse and protect against lethal bacterial infection. The influence of persistent CMV on the outcome of an acute retroviral superinfection is still unknown. Results Here we show that a persistent murine CMV (mCMV) infection surprisingly confers higher resistance to a primary Friend retrovirus infection (FV) of mice. Decreased FV titers and augmented FV-specific CD8 T-cell responses were found in mCMV infected mice during primary FV superinfection. NK cells produced higher amounts of IFNgamma after FV infection of persistently mCMV infected mice suggesting that these cells were involved in the ‘protective’ effect. Depletion of NK1.1+ cells or neutralization of IFNgamma during FV superinfection abrogated the mCMV-mediated effect. Conclusion Our data demonstrate for the first time that a persistent CMV infection induces long-lasting NK cell responses that can enhance immunity to primary retroviral infections. To our knowledge, studies investigating primary HIV infection have not analyzed the role of the CMV seropositivity in these patients. Our observations suggest that NK cells in CMV seropositive individuals might contribute to the control of primary HIV infection.
    Retrovirology 06/2013; 10(1):58. DOI:10.1186/1742-4690-10-58 · 4.19 Impact Factor
Show more