Article

Tissue engineering: Blood vessels on a chip.

Nature (Impact Factor: 42.35). 08/2012; 488(7412):465-6. DOI: 10.1038/488465a
Source: PubMed

ABSTRACT To understand how blood vessels form and function, scientists require
reproducible systems that mimic living tissues. An innovative approach
based on microfabricated vessels provides a key step towards this goal.

0 Bookmarks
 · 
112 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microscale platforms are enabling for cell-based studies as they allow the recapitulation of physiological conditions such as extracellular matrix (ECM) configurations and soluble factors interactions. Gradient generation platforms have been one of the few applications of microfluidics that have begun to be translated to biological laboratories and may become a new "gold standard". Though gradient generation platforms are now established, their full potential has not yet been realized. Here, we will provide our perspective on milestones achieved in the development of gradient generation and cell migration platforms, as well as emerging directions such as using cell migration as a diagnostic readout and attaining mechanistic information from cell migration models.
    Lab on a Chip 07/2014; · 5.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite extensive work showing the importance of blood flow in angiogenesis and vessel remodeling, very little is known about how changes in vessel diameter are orchestrated at the cellular level in response to mechanical forces. To define the cellular changes necessary for remodeling, we performed live confocal imaging of cultured mouse embryos during vessel remodeling. Our data revealed that vessel diameter increase occurs via two distinct processes that are dependent on normal blood flow: vessel fusions and directed endothelial cell migrations. Vessel fusions resulted in a rapid change in vessel diameter and were restricted to regions that experience the highest flow near the vitelline artery and vein. Directed cell migrations induced by blood flow resulted in the recruitment of endothelial cells to larger vessels from smaller capillaries and were observed in larger artery segments as they expanded. The dynamic and specific endothelial cell behaviors captured in this study reveal how sensitive endothelial cells are to changes in blood flow and how such responses drive vascular remodeling.
    Development 09/2013; · 6.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microfluidics is an emerging field of in vitro science which is generating many new patents. Microfluidics employs small ‘biochips’ of glass, plastic or other materials, which contain an internal array of wells and channels, often with valves and other embedded devices. Cells, tissues or embryos can be implanted in the wells of a sterilized biochip. Then, by connecting the biochip to a pump, culture medium can be circulated through the wells, thereby providing a constant flow-through of nutrients and removal of metabolites. This flow-through culture environment may be closer in some respects to physiological (in vivo) conditions than conventional static replacement cultures. For these and other reasons, discussed in this review, microfluidics has found important applications in the field of regenerative medicine, in which the culture of complex tissues in physiological conditions is a crucial goal. Recent patents cover various modifications of chip architecture that allow the three-dimensional culture of cells, tissues and organs. Microfluidic devices, several of them patented, have been developed for culturing a wide range of different cell types, including primary endothelial cells, interstitial cells, mammalian adherent cell lines, embryonic stem cells, fibroblasts, tumor cells and neurons. Devices have also been described, and some of them patented, in which artificial capillary networks can be grown from endothelial cells. Other devices allow different tissues to be co-cultured in a way that mimics the functions of an organ. Examples of these ‘organs-on-a-chip’ include lungs, heart, kidneys, gastrointestinal tract and brain culture models. Microfluidic devices for the culture and manipulation of whole embryos of zebrafish, the nematode Caenorhabditis elegans and mouse, have also been described and/or patented. These and other microfluidic culture systems are also finding various biomedical applications, such as safety and efficacy testing of drugs, and several patents have been published for these applications. In this review, we summarize recent scientific advances and patents in the field of microfluidics that have special relevance to regenerative medicine.
    Recent patents on Regenerative Medicine. 09/2013; 3(3):249-263.