Tissue engineering: Blood vessels on a chip.

Nature (Impact Factor: 38.6). 08/2012; 488(7412):465-6. DOI: 10.1038/488465a
Source: PubMed

ABSTRACT To understand how blood vessels form and function, scientists require
reproducible systems that mimic living tissues. An innovative approach
based on microfabricated vessels provides a key step towards this goal.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Microfluidics is an emerging field of in vitro science which is generating many new patents. Microfluidics employs small ‘biochips’ of glass, plastic or other materials, which contain an internal array of wells and channels, often with valves and other embedded devices. Cells, tissues or embryos can be implanted in the wells of a sterilized biochip. Then, by connecting the biochip to a pump, culture medium can be circulated through the wells, thereby providing a constant flow-through of nutrients and removal of metabolites. This flow-through culture environment may be closer in some respects to physiological (in vivo) conditions than conventional static replacement cultures. For these and other reasons, discussed in this review, microfluidics has found important applications in the field of regenerative medicine, in which the culture of complex tissues in physiological conditions is a crucial goal. Recent patents cover various modifications of chip architecture that allow the three-dimensional culture of cells, tissues and organs. Microfluidic devices, several of them patented, have been developed for culturing a wide range of different cell types, including primary endothelial cells, interstitial cells, mammalian adherent cell lines, embryonic stem cells, fibroblasts, tumor cells and neurons. Devices have also been described, and some of them patented, in which artificial capillary networks can be grown from endothelial cells. Other devices allow different tissues to be co-cultured in a way that mimics the functions of an organ. Examples of these ‘organs-on-a-chip’ include lungs, heart, kidneys, gastrointestinal tract and brain culture models. Microfluidic devices for the culture and manipulation of whole embryos of zebrafish, the nematode Caenorhabditis elegans and mouse, have also been described and/or patented. These and other microfluidic culture systems are also finding various biomedical applications, such as safety and efficacy testing of drugs, and several patents have been published for these applications. In this review, we summarize recent scientific advances and patents in the field of microfluidics that have special relevance to regenerative medicine.
    Recent patents on Regenerative Medicine. 09/2013; 3(3):249-263.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This protocol describes how to form a 3D cell culture with explicit, endothelialized microvessels. The approach leads to fully enclosed, perfusable vessels in a bioremodelable hydrogel (type I collagen). The protocol uses microfabrication to enable user-defined geometries of the vascular network and microfluidic perfusion to control mass transfer and hemodynamic forces. These microvascular networks (μVNs) allow for multiweek cultures of endothelial cells or cocultures with parenchymal or tissue cells in the extra-lumen space. The platform enables real-time fluorescence imaging of living engineered tissues, in situ confocal fluorescence of fixed cultures and transmission electron microscopy (TEM) imaging of histological sections. This protocol enables studies of basic vascular and blood biology, provides a model for diseases such as tumor angiogenesis or thrombosis and serves as a starting point for constructing prevascularized tissues for regenerative medicine. After one-time microfabrication steps, the system can be assembled in less than 1 d and experiments can run for weeks.
    Nature Protocol 09/2013; 8(9):1820-36. · 8.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lab-on-a-chip technology is an emerging field evolving from the recent advances of micro- and nanotechnologies. The technology allows the integration of various components into a single microdevice. Microfluidics, the science and engineering of fluid flow in microscale, is the enabling underlying concept for lab-on-a-chip technology. The present paper reviews the design, fabrication and characterization of drug delivery systems based on this amazing technology. The systems are categorized and discussed according to the scales at which the drug is administered. Starting with the fundamentals on scaling laws of mass transfer and basic fabrication techniques, the paper reviews and discusses drug delivery devices for cellular, tissue and organism levels. At the cellular level, a concentration gradient generator integrated with a cell culture platform is the main drug delivery scheme of interest. At the tissue level, the synthesis of smart particles as drug carriers using lab-on-a-chip technology is the main focus of recent developments. At the organism level, microneedles and implantable devices with fluid-handling components are the main drug delivery systems. For drug delivery to a small organism that can fit into a microchip, devices similar to those of cellular level can be used.
    Advanced drug delivery reviews 05/2013; · 11.96 Impact Factor