Opposing Roles for Complement Component C5a in Tumor Progression and the Tumor Microenvironment

Division of Hematology/Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
The Journal of Immunology (Impact Factor: 5.36). 08/2012; 189(6):2985-94. DOI: 10.4049/jimmunol.1200846
Source: PubMed

ABSTRACT Promoting complement (C) activation may enhance immunological mechanisms of anti-tumor Abs for tumor destruction. However, C activation components, such as C5a, trigger inflammation, which can promote tumor growth. We addressed the role of C5a on tumor growth by transfecting both human carcinoma and murine lymphoma with mouse C5a. In vitro growth kinetics of C5a, control vector, or parental cells revealed no significant differences. Tumor-bearing mice with C5a-transfected xenografted tumor cells had significantly less tumor burden as compared with control vector tumors. NK cells and macrophages infiltrated C5a-expressing tumors with significantly greater frequency, whereas vascular endothelial growth factor, arginase, and TNF-α production were significantly less. Tumor-bearing mice with high C5a-producing syngeneic lymphoma cells had significantly accelerated tumor progression with more Gr-1(+)CD11b(+) myeloid cells in the spleen and overall decreased CD4(+) and CD8(+) T cells in the tumor, tumor-draining lymph nodes, and the spleen. In contrast, tumor-bearing mice with low C5a-producing lymphoma cells had a significantly reduced tumor burden with increased IFN-γ-producing CD4(+) and CD8(+) T cells in the spleen and tumor-draining lymph nodes. These studies suggest concentration of local C5a within the tumor microenvironment is critical in determining its role in tumor progression.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Monoclonal antibodies (mAb) have been used as targeted treatments against cancer for more than a decade, with mixed results. Research is needed to understand mAb mechanisms of action with the goal of improving the efficacy of currently used mAbs and guiding the design of novel mAbs. While some mAb-induced tumor cell killing is a result of direct effects on tumor cell signaling, mAb opsonization of tumor cells also triggers activation of immune responses due to complement activation and engagement of antibody receptors on immune effector cells. In fact, complement has been shown to play an important role in modulating the anti-tumor activity of many mAb through complement-dependent cytotoxicity, antibody-dependent cytotoxicity, and through indirect effects by modulating the tumor microenvironment. Complement activity can have both agonistic and antagonistic effects on these processes. How the balance of such effects impacts on the clinical efficacy of mAb therapy remains unclear. In this review, we discuss the mAbs currently approved for cancer treatment and examine how complement can impact their efficacy with a focus on how this information might be used to improve the clinical efficacy of mAb treatment.
    Immunologic Research 06/2014; 59(1-3). DOI:10.1007/s12026-014-8542-z · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antimicrobial peptides (AMPs) represent a group of small (6-100 amino acids), biologically active molecules, which are produced by plants, mammals, and microorganisms (1). An important element of the innate immune response, AMP, possesses potent antibiotic, antifungal, and antiviral activities. Furthermore, AMP may be involved in a number of other processes such as angiogenesis and modulation of the immune response such as stimulation of chemokines and chemotaxis of leukocytes. AMPs have been proposed as alternative therapies for infectious diseases. AMP may also exert cytotoxic activity against tumor cells. Further understanding of the biological function of these peptides during tumor development and progression may aid in the development of novel anti-tumor therapies with refined application of innate molecules. AMP and complement have distinct roles to play in shaping the microenvironment (Table 1). Components of the complement system are integral contributors in responding to infection and sterile inflammation. Moreover, complement plays a role in the trafficking of cells in the tumor microenvironment, and thereby possibly in the immune response to cancer. This article will try to outline characteristics of AMP and complement in mobilization and recruitment of cells in tumor microenvironment.
    Frontiers in Immunology 01/2015; 6:2. DOI:10.3389/fimmu.2015.00002
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The efficacy of antibody-based immunotherapy is due to the activation of apoptosis, the engagement of antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity (CDC). We developed a novel strategy to enhance CDC using bispecific antibodies (bsAbs) that neutralize the C-regulators CD55 and CD59 to enhance C-mediated functions. Two bsAbs (MB20/55 and MB20/59) were designed to recognize CD20 on one side. The other side neutralizes CD55 or CD59. Analysis of CDC revealed that bsAbs could kill 4 to 25 times more cells than anti-CD20 recombinant antibody in cell lines or cells isolated from patients with chronic lymphocytic leukemia. The pharmacokinetics of the bsAbs was evaluated in a human-SCID model of Burkitt lymphoma. The distribution profile of bsAbs mimics the data obtained by studying the pharmacokinetics of anti-CD20 antibodies, showing a peak in the tumor mass 3-4 days after injection. The treatment with bsAbs completely prevented the development of human/SCID lymphoma. The tumor growth was blocked by the activation of the C cascade and by the recruitment of macrophages, PMN and NK cells. This strategy can easily be applied to the other anti-tumor C-fixing antibodies currently used in the clinic or tested in preclinical studies using the same vector with the appropriate modifications.Leukemia accepted article preview online, 6 June 2014; doi:10.1038/leu.2014.185.
    Leukemia 06/2014; 29(2). DOI:10.1038/leu.2014.185 · 9.38 Impact Factor