Article

Granulocyte macrophage colony-stimulating factor treatment of a patient in myasthenic crisis: Effects on regulatory T cells

Department of Neurology and Rehabilitation, University of Illinois Medical Center, 912 South Wood Street, 855N, M/C 796, Chicago, Illinois 60612, USA.
Muscle & Nerve (Impact Factor: 2.31). 09/2012; 46(3):449-53. DOI: 10.1002/mus.23488
Source: PubMed

ABSTRACT In this study we describe a patient with a prolonged myasthenic crisis refractory to conventional immunomodulatory therapy who was treated with GM-CSF (granulocyte macrophage colony-stimulating factor, sargramostim).
T-regulatory cell (Treg) suppressive function and Foxp3 expression were evaluated before and after treatment with GM-CSF.
Treatment with GM-CSF was associated with clinical improvement, expansion in the circulating numbers of Foxp3(+) cells, increase in Foxp3 expression levels in Tregs, early improvement in Treg suppressive capacity for AChR-α-induced T-cell proliferation, and subsequent enhancement in Treg suppression of polyclonal T-cell proliferation.
Although definitive conclusions cannot be drawn from a single case, the correlation with similar findings in GM-CSF-treated animals with experimental autoimmune myasthenia gravis suggests further exploration of the effects of GM-CSF in myasthenia gravis should be studied in a clinical trial setting.

0 Followers
 · 
105 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Innate and adaptive immune responses can speed nigrostriatal neurodegeneration in Parkinson's disease (PD). We posit that GM-CSF can attenuate such responses. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxicated mice, GM-CSF given prior to MPTP protected nigral dopaminergic neurons coincident with altered microglial morphologies and regulatory T cell (Treg) induction. Adoptive transfer of GM-CSF-induced Treg to MPTP mice protected nigral neurons. Gene expression analyses revealed novel immune-based neuronal protection pathways linked to the upregulation of IL-27. The results provide evidence that GM-CSF modulation of immunity could be of clinical benefit for PD.
    Journal of neuroimmunology 10/2013; DOI:10.1016/j.jneuroim.2013.10.009 · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review focuses on the most recent data on biotherapeutic approaches, using DNA, RNA, recombinant proteins, or cells as therapeutic tools or targets for the treatment of neuromuscular diseases. Many of these novel technologies have now reached the clinical stage and have or are about to move to the market. Others, like genome editing are still in an early stage but hold great promise. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
    Revue Neurologique 11/2014; DOI:10.1016/j.neurol.2014.07.018 · 0.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: IL-10-competent subset within CD1d(hi)CD5(+) B cells, also known as B10 cells, has been shown to regulate autoimmune diseases. Whether B10 cells can prevent or suppress the development of experimental autoimmune myasthenia gravis (EAMG) has not been studied. In this study, we investigated whether low-dose GM-CSF, which suppresses EAMG, can expand B10 cells in vivo, and whether adoptive transfer of CD1d(hi)CD5(+) B cells would prevent or suppress EAMG. We found that treatment of EAMG mice with low-dose GM-CSF increased the proportion of CD1d(hi)CD5(+) B cells and B10 cells. In vitro coculture studies revealed that CD1d(hi)CD5(+) B cells altered T cell cytokine profile but did not directly inhibit T cell proliferation. In contrast, CD1d(hi)CD5(+) B cells inhibited B cell proliferation and its autoantibody production in an IL-10-dependent manner. Adoptive transfer of CD1d(hi)CD5(+) B cells to mice could prevent disease, as well as suppress EAMG after disease onset. This was associated with downregulation of mature dendritic cell markers and expansion of regulatory T cells resulting in the suppression of acetylcholine receptor-specific T cell and B cell responses. Thus, our data have provided significant insight into the mechanisms underlying the tolerogenic effects of B10 cells in EAMG. These observations suggest that in vivo or in vitro expansion of CD1d(hi)CD5(+) B cells or B10 cells may represent an effective strategy in the treatment of human myasthenia gravis.
    The Journal of Immunology 08/2014; 193(6). DOI:10.4049/jimmunol.1303397 · 5.36 Impact Factor