RhoC Impacts the Metastatic Potential and Abundance of Breast Cancer Stem Cells

Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America.
PLoS ONE (Impact Factor: 3.53). 07/2012; 7(7):e40979. DOI: 10.1371/journal.pone.0040979
Source: PubMed

ABSTRACT Cancer stem cells (CSCs) have been shown to promote tumorigenesis of many tumor types, including breast, although their relevance to cancer metastasis remains unclear. While subpopulations of CSCs required for metastasis have been identified, to date there are no known molecular regulators of breast CSC (BCSC) metastasis. Here we identify RhoC GTPase as an important regulator of BCSC metastasis, and present evidence suggesting that RhoC also modulates the frequency of BCSCs within a population. Using an orthotopic xenograft model of spontaneous metastasis we discover that RhoC is both necessary and sufficient to promote SUM149 and MCF-10A BCSC metastasis--often independent from primary tumor formation--and can even induce metastasis of non-BCSCs within these cell lines. The relationship between RhoC and BCSCs persists in breast cancer patients, as expression of RhoC and the BCSC marker ALDH1 are highly correlated in clinical specimens. These results suggest new avenues to combating the deadliest cells driving the most lethal stage of breast cancer progression.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Invasion and metastasis of solid tumors are the major causes of death in cancer patients. Cancer stem cells (CSCs) constitute a small fraction of tumor cell population, but play a critical role in tumor invasion and metastasis. The xenograft of tumor cells in immunodeficient mice is one of commonly used in vivo models to study the invasion and metastasis of cancer cells. However, this model is time-consuming and labor intensive. Zebrafish (Danio rerio) and their transparent embryos are emerging as a promising xenograft tumor model system for studies of tumor invasion. In this study, we established a tumor invasion model by using zebrafish embryo xenografted with human glioblastoma cell line U87 and its derived cancer stem cells (CSCs). We found that CSCs-enriched from U87 cells spreaded via the vessels within zebrafish embryos and such cells displayed an extremely high level of invasiveness which was associated with the up-regulated MMP-9 by CSCs. The invasion of glioma CSCs (GSCs) in zebrafish embryos was markedly inhibited by an MMP-9 inhibitor. Thus, our zebrafish embryo model is considered a cost-effective approach tostudies of the mechanisms underlying the invasion of CSCs and suitable for high-throughput screening of novel anti-tumor invasion/metastasis agents.
    PLoS ONE 04/2013; 8(4):e61801. DOI:10.1371/journal.pone.0061801 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: RhoC oncogene is a well characterized marker of metastasis in a majority of invasive cancers, including HNSCC. Elevated RhoC expression has been found to be associated with distant metastasis. Statins are a class of drugs that are used to reduce cholesterol levels by inhibiting HMG-CoA reductase activity which in turns prevents mevalonate synthesis, which is a precursor for synthesis of cholesterol and prenylation. Interestingly, the proper function of Rho proteins depends on prenylation. Significantly, it has been reported that metastasis in human melanoma can be reduced by atorvastatin which inhibits RhoC activity by preventing its geranylgeranylation. Given that RhoC is a key oncogene involved in metastasis, we hypothesized Atorvastatin can reduce head and neck metastasis by inhibiting RhoC activity. METHODS: In vitro and in vivo studies were carried out to evaluate the ability of Atorvastatin to inhibit RhoC function and HNSCC metastasis. Cell motility, proliferation, cell invasion, and colony formation assays were performed according to the standard protocols. RESULTS: Atorvastatin treatment significantly reduced the active form of RhoC in vitro and diminished cell motility, invasion, proliferation and colony formation. Importantly, we observed a significant decrease in p-ERK1/2 and p-STAT3 in Atorvastatin treated cell lines. In vivo experiments revealed inhibition of angiogenesis and lung metastases with Atorvastatin therapy. CONCLUSIONS: This study is the first of its kind to establish a potential role of Atorvastatin in head and neck cancer therapy. These findings suggest that Atorvastatin can be a potential low risk adjuvant therapy to minimize metastases in aggressive forms of HNSCC.
    Oral Oncology 05/2013; DOI:10.1016/j.oraloncology.2013.04.003 · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although there is no standard treatment protocol for inflammatory breast cancer (IBC), multi-modality treatment has improved survival. In this study we profiled the NCI approved oncology drug set in a qHTS format to identify those that are efficacious in basal type and ErbB2 overexpressing IBC models. Further, we characterized the sensitivity of an acquired therapeutic resistance model to the oncology drugs. We observed that lapatinib-induced acquired resistance in SUM149 cells led to cross-resistance to other targeted- and chemotherapeutic drugs. Removal of the primary drug to which the model was developed led to re-sensitization to multiple drugs to a degree comparable to the parental cell line; this coincided with the cells regaining the ability to accumulate ROS and reducing expression of anti-apoptotic factors and the antioxidant SOD2. We suggest that our findings provide a unique IBC model system for gaining an understanding of acquired therapeutic resistance and the effect of redox adaptation on anti-cancer drug efficacy.
    Cancer letters 05/2013; DOI:10.1016/j.canlet.2013.05.017 · 5.02 Impact Factor