Monocyte subsets in human liver disease show distinct phenotypic and functional characteristics.

Centre for Liver Research and NIHR Biomedical Research Unit in Liver Disease, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK.
Hepatology (Impact Factor: 12). 08/2012; DOI: 10.1002/hep.26016
Source: PubMed

ABSTRACT Liver fibrosis is a wound healing response to chronic liver injury and inflammation in which macrophages and infiltrating monocytes participate in both the development and resolution phase. In humans, three monocyte subsets have been identified: the classical CD14++CD16-, intermediate CD14++CD16+ and non-classical CD14+CD16++ monocytes. We studied the phenotype and function of these monocyte subsets in peripheral blood and liver tissue from patients with chronic inflammatory and fibrotic liver diseases. The frequency of intrahepatic monocytes increased in disease compared with control liver tissue and in both non-diseased and diseased livers there was a higher frequency of CD14++CD16+ cells with blood. Our data suggest two non-exclusive mechanisms of CD14++CD16+ accumulation in the inflamed liver: 1) recruitment from blood because more than twice as many CD14++CD16+ monocytes underwent transendothelial migration through hepatic endothelial cells compared with CD14++CD16- cells 2) local differentiation from CD14++CD16- classical monocytes in response to TGFβ and IL-10. Intrahepatic CD14++CD16+ cells expressed both macrophage and dendritic cell markers but showed high levels of phagocytic activity, antigen presentation and T cell proliferation and secreted pro-inflammatory (TNFα, IL-6, IL-8, IL-1β) and pro-fibrogenic cytokines (IL-13), chemokines (CCL1, CCL2, CCL3, CCL5), and growth factors (G-CSF and GM-CSF), consistent with a role in the wound healing response. CONCLUSION: Intermediate CD14++CD16+ monocytes preferentially accumulate in chronically inflamed human liver as a consequence of enhanced recruitment from blood and local differentiation from classical CD14++CD16- monocytes. Their phagocytic potential and ability to secrete inflammatory and pro-fibrogenic cytokines suggests they play an important role in hepatic fibrogenesis. (HEPATOLOGY 2012.).

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: The colony-stimulating factor-1 (CSF-1) is the principal regulator of the survival, proliferation, differentiation, and function of macrophages and their precursors, and has been shown to play a role in the etiology of inflammation. We recently identified a novel mechanism for the control of CSF-1 activity in teleost fish, through the production of an inhibitory soluble form of the CSF-1 receptor (sCSF-1R). Primary goldfish kidney macrophages selectively expressed sCSF-1R during the senescence phase, which corresponds to a defined stage of in vitro culture development where inhibition of macrophage proliferation and apoptotic cell death are prominent. In contrast, primary macrophage cultures undergoing active proliferation displayed low levels of sCSF-1R expression. Addition of purified recombinant sCSF-1R to developing primary macrophage cultures leads to a dose-dependent decrease in macrophage proliferation and inhibits macrophage antimicrobial functions including chemotaxis, phagocytosis, and production of reactive oxygen intermediates. Using a goldfish in vivo model of self-resolving peritonitis, we found that sCSF-1R plays a role in the inhibition of inflammation, following an initial acute phase of antimicrobial responses within an inflammatory site. Soluble CSF-1R inhibits pro-inflammatory cytokine production, inhibits leukocyte recruitment to the inflammatory site and decreases ROS production in a dose-dependent manner. This sCSF-1R-dependent regulation of inflammation appears to be an elegant mechanism for the control of macrophage numbers at inflammatory sites of lower vertebrates. Overall, our results provide new insights into the evolutionary origins of the CSF-1 immune regulatory axis.
    Fish &amp Shellfish Immunology 04/2014; · 2.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: & Aims: T-cell mediated biliary injury is a feature of primary sclerosing cholangitis (PSC). We studied the roles of CD28(-) T cells in PSC and their regulation by vitamin D. Peripheral and liver-infiltrating mononuclear cells were isolated from blood or fresh liver tissue. We analyzed numbers, phenotypes, functions, and localization patterns of CD28(-) T cells, along with their ability to activate biliary epithelial cells. We measured levels of tumor necrosis factor (TNF)α in liver tissues from patients with PSC and the effects of exposure to active vitamin D (1,25(OH)2D3) on expression of CD28. A significantly greater proportion of CD4(+) and CD8(+) T cells that infiltrated liver tissues of patients with PSC were CD28(-), compared with control liver tissue (CD4(+): 30.3% versus 2.5%; P<.0001 and CD8(+): 68.5% versus 31.9%; P<.05). The mean % of CD4(+)CD28(-) T cells in liver tissues from patients with PSC was significantly higher than from patients with primary biliary cirrhosis or non-alcoholic steatohepatitis (P<.05). CD28(-) T cells were activated CD69(+)CD45RA(-)CCR7(-) effector memory and perforin(+) granzyme B(+) cytotoxic cells, which express CD11a, CX3CR1, CXCR6, and CCR10-consistent with their infiltration of liver and localization around bile ducts. Compared to CD28(+) T cells, activated CD28(-) T cells produced significantly higher levels of interferon γ and TNFα (P<.05), and induced upregulation of ICAM1, HLADR, and CD40 by primary epithelial cells (3.6-fold, 1.5-fold, and 1.2-fold, respectively). Liver tissue from patients with PSC contained high levels of TNFα; TNFα downregulated expression of CD28 by T cells in vitro (P<.01); this effect was prevented by administration of 1,25(OH)2D3 (P<.05). Inflammatory CD28(-) T cells accumulate in livers of patients with PSC and localize around bile ducts. The TNFα-rich microenvironment of this tissue promotes inflammation; these effects are reversed by vitamin D in vitro.
    Gastroenterology 04/2014; · 12.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Globally, over 500 million people are chronically infected with the hepatitis B virus (HBV) or hepatitis C virus (HCV). These chronic infections cause liver inflammation, and may result in fibrosis/cirrhosis or hepatocellular carcinoma. Albeit that HBV and HCV differ in various aspects, clearance, persistence and immunopathology of either infection depends on the interplay between the innate and adaptive responses in the liver. Kupffer cells, the liver-resident macrophages, are abundantly present in the sinusoids of the liver. These cells have been shown to be crucial players to maintain homeostasis, but also contribute to pathology. However, it is important to note that especially during pathology, Kupffer cells are difficult to distinguish from infiltrating monocytes/macrophages and other myeloid cells. In this review we discuss our current understanding of Kupffer cells, and assess their role in the regulation of anti-viral immunity and disease pathogenesis during HBV and HCV infection.
    Journal of Hepatology 05/2014; · 9.86 Impact Factor


Available from
May 23, 2014

Similar Publications