Selective Penicillin-Binding Protein Imaging Probes Reveal Substructure in Bacterial Cell Division

Departments of †Chemistry, ‡Molecular and Cellular Biochemistry, and §Biology, Indiana University , Bloomington, Indiana 47405, United States.
ACS Chemical Biology (Impact Factor: 5.44). 08/2012; 7(10):1746-53. DOI: 10.1021/cb300329r
Source: PubMed

ABSTRACT The peptidoglycan cell wall is a common target for antibiotic therapy, but its structure and assembly are only partially understood. Peptidoglycan synthesis requires a suite of penicillin-binding proteins (PBPs), the individual roles of which are difficult to determine because each enzyme is often dispensable for growth perhaps due to functional redundancy. To address this challenge, we sought to generate tools that would enable selective examination of a subset of PBPs. We designed and synthesized fluorescent and biotin derivatives of the β-lactam-containing antibiotic cephalosporin C. These probes facilitated specific in vivo labeling of active PBPs in both Bacillus subtilis PY79 and an unencapsulated derivative of D39 Streptococcus pneumoniae. Microscopy and gel-based analysis indicated that the cephalosporin C-based probes are more selective than BOCILLIN-FL, a commercially available penicillin V analogue, which labels all PBPs. Dual labeling of live cells performed by saturation of cephalosporin C-susceptible PBPs followed by tagging of the remaining PBP population with BOCILLIN-FL demonstrated that the two sets of PBPs are not co-localized. This suggests that even PBPs that are located at a particular site (e.g., septum) are not all intermixed, but rather that PBP subpopulations are discretely localized. Accordingly, the Ceph C probes represent new tools to explore a subset of PBPs and have the potential to facilitate a deeper understand of the roles of this critical class of proteins.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic and prokaryotic organisms possess huge numbers of uncharacterized enzymes. Selective inhibitors offer powerful probes for assigning functions to enzymes in native biological systems. Here, we discuss how the chemical proteomic platform activity-based protein profiling (ABPP) can be implemented to discover selective and in vivo-active inhibitors for enzymes. We further describe how these inhibitors have been used to delineate the biochemical and cellular functions of enzymes, leading to the discovery of metabolic and signaling pathways that make important contributions to human physiology and disease. These studies demonstrate the value of selective chemical probes as drivers of biological inquiry.
    Annual Review of Biochemistry 06/2014; 83:341-377. DOI:10.1146/annurev-biochem-060713-035708 · 26.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A substantial obstacle to the existing treatment of bacterial diseases is the lack of specific probes that can be used to diagnose and treat pathogenic bacteria in a selective manner while leaving the microbiome largely intact. To tackle this problem, there is an urgent need to develop pathogen-specific therapeutics and diagnostics. Here, we describe recent evidence that indicates distinctive glycans found exclusively on pathogenic bacteria could form the basis of targeted therapeutic and diagnostic strategies. In particular, we highlight the use of metabolic oligosaccharide engineering to covalently deliver therapeutics and imaging agents to bacterial glycans.
    Chemical Communications 03/2014; 50(36). DOI:10.1039/c4cc00660g · 6.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The relative localization patterns of class B penicillin-binding proteins Pbp2x and Pbp2b were used as positional indicators of septal and peripheral (side-wall-like) peptidoglycan (PG) synthesis, respectively, in the midcell regions of Streptococcus pneumoniae cells at different stages of division. We confirm that Pbp2x and Pbp2b are essential in the strain D39 genetic background, which differs from that of laboratory strains. We show that Pbp2b, like Pbp2x and class A Pbp1a, follows a different localization pattern than FtsZ and remains at division septa after FtsZ reappears at the equators of daughter cells. Pulse-experiments with fluorescent D-amino acids (FDAAs) were performed in wild-type cells and in cells in which Pbp2x activity was preferentially inhibited by methicillin or Pbp2x amount was depleted. These experiments show that Pbp2x activity separates from that of other PBPs to the centers of constricting septa in mid-to-late divisional cells resolved by high-resolution 3D-SIM microscopy. Dual-protein and protein-fluorescent vancomycin 2D and 3D-SIM immunofluorescence microscopy (IFM) of cells at different division stages corroborate that Pbp2x separates to the centers of septa surrounded by an adjacent constricting ring containing Pbp2b, Pbp1a, and regulators, StkP and MreC. The separate localization of Pbp2x suggests distinctive roles in completing septal PG synthesis and remodeling.
    Molecular Microbiology 08/2014; 94(1). DOI:10.1111/mmi.12745 · 5.03 Impact Factor