Rab7 and Arl8 GTPases are Necessary for Lysosome Tubulation in Macrophages.

Molecular Science Program and the Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada.
Traffic (Impact Factor: 4.71). 08/2012; DOI: 10.1111/tra.12003
Source: PubMed

ABSTRACT Lysosomes provide a niche for molecular digestion and are a convergence point for endocytic trafficking, phagosome maturation and autophagy. Typically, lysosomes are small, globular organelles that appear punctate under the fluorescence microscope. However, activating agents like phorbol esters transform macrophage lysosomes into tubular lysosomes (TLs), which have been implicated in retention of pinocytic uptake and phagosome maturation. Moreover, dendritic cells exposed to lipopolysaccharides (LPSs) convert their punctate class II major histocompatibility complex compartment, a lysosome-related organelle, into a tubular network that is thought to be involved in antigen presentation. Other than a requirement for microtubules and kinesin, little is known about the molecular mechanisms that drive lysosome tubulation. Here, we show that macrophage cell lines readily form TLs after LPS exposure, with a requirement for the Rab7 GTPase and its effectors RILP (Rab7-interacting lysosomal protein) and FYCO1 (coiled-coil domain-containing protein 1), which respectively modulate the dynein and kinesin microtubule motor proteins. We also show that Arl8B, a recently identified lysosomal GTPase, and its effector SKIP, are also important for TL biogenesis. Finally, we reveal that TLs are significantly more motile than punctate lysosomes within the same LPS-treated cells. Therefore, we identify the first molecular regulators of lysosome tubulation and we show that TLs represent a more dynamic lysosome population.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Of the approximately 70 human Rab GTPases, nearly three-quarters are involved in endocytic trafficking. Significant plasticity in endosomal membrane transport pathways is closely coupled to receptor signaling and Rab GTPase-regulated scaffolds. Here we review current literature pertaining to endocytic Rab GTPase localizations, functions, and coordination with regulatory proteins and effectors. The roles of Rab GTPases in (1) compartmentalization of the endocytic pathway into early, recycling, late, and lysosomal routes; (2) coordination of individual transport steps from vesicle budding to fusion; (3) effector interactomes; and (4) integration of GTPase and signaling cascades are discussed.
    Cold Spring Harbor perspectives in biology 10/2014; · 8.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) phagocytose large particles like bacteria at sites of infection and progressively degrade them within maturing phagosomes. Phagosomes in DCs are also signaling platforms for pattern recognition receptors, such as Toll-like receptors (TLRs), and sites for assembly of cargo-derived peptides with major histocompatibility complex class II (MHC-II) molecules. Although TLR signaling from phagosomes stimulates presentation of phagocytosed antigens, the mechanisms underlying this enhancement and the cell surface delivery of MHC-II-peptide complexes from phagosomes are not known. We show that in DCs, maturing phagosomes extend numerous long tubules several hours after phagocytosis. Tubule formation requires an intact microtubule and actin cytoskeleton and MyD88-dependent phagosomal TLR signaling, but not phagolysosome formation or extensive proteolysis. In contrast to the tubules that emerge from endolysosomes after uptake of soluble ligands and TLR stimulation, the late-onset phagosomal tubules are not essential for delivery of phagosome-derived MHC-II-peptide complexes to the plasma membrane. Rather, tubulation promotes MHC-II presentation by enabling maximal cargo transfer among phagosomes that bear a TLR signature. Our data show that phagosomal tubules in DCs are functionally distinct from those that emerge from lysosomes and are unique adaptations of the phagocytic machinery that facilitate cargo exchange and antigen presentation among TLR-signaling phagosomes.
    Proceedings of the National Academy of Sciences 10/2014; · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Three-dimensional video imaging has emerged as an indispensable tool for real-time monitoring of dynamic acidic organelles. However, the limitation of video imaging is the absence of a specific stain for acidic organelle trackers. The aim of this work was to investigate the applicability of a potential acidic organelle tracker, Lyso-R, in three-dimensional video imaging in live cells. In a close examination of three differently designed rhodamine dyes, Lyso-R outperformed the other two with a suitable pKa value and higher membrane permeability. The uninterrupted fluorescence of Lyso-R towards macromolecules, e.g. lecithin and proteins, led to higher specificity and signal-to-background ratio than LysoTracker DND 189 and DND 99 for imaging acidic organelles. In addition, Lyso-R was photostable, and MTT assays confirmed its low toxicity towards cells. Inspired by these facts, three-dimensional tracking of a single acidic organelle in a live cell was obtained by staining with Lyso-R under confocal microscopy. The measurement of this organelle demonstrated that the distance change of the organelle centroid on XY plane was sharper than its depth change. The usage of Lyso-R was further extended with two-dimensional video imaging of acidic organelles during various cell metabolisms. All of these results demonstrate the potential applicability of Lyso-R as a three-dimensional imaging tracker of acidic organelles.
    RSC Advances 08/2014; 4(71). · 3.71 Impact Factor

Full-text (2 Sources)

Available from
Jan 16, 2015