Rab7 and Arl8 GTPases are Necessary for Lysosome Tubulation in Macrophages

Molecular Science Program and the Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada.
Traffic (Impact Factor: 4.35). 08/2012; 13(12). DOI: 10.1111/tra.12003
Source: PubMed


Lysosomes provide a niche for molecular digestion and are a convergence point for endocytic trafficking, phagosome maturation and autophagy. Typically, lysosomes are small, globular organelles that appear punctate under the fluorescence microscope. However, activating agents like phorbol esters transform macrophage lysosomes into tubular lysosomes (TLs), which have been implicated in retention of pinocytic uptake and phagosome maturation. Moreover, dendritic cells exposed to lipopolysaccharides (LPSs) convert their punctate class II major histocompatibility complex compartment, a lysosome-related organelle, into a tubular network that is thought to be involved in antigen presentation. Other than a requirement for microtubules and kinesin, little is known about the molecular mechanisms that drive lysosome tubulation. Here, we show that macrophage cell lines readily form TLs after LPS exposure, with a requirement for the Rab7 GTPase and its effectors RILP (Rab7-interacting lysosomal protein) and FYCO1 (coiled-coil domain-containing protein 1), which respectively modulate the dynein and kinesin microtubule motor proteins. We also show that Arl8B, a recently identified lysosomal GTPase, and its effector SKIP, are also important for TL biogenesis. Finally, we reveal that TLs are significantly more motile than punctate lysosomes within the same LPS-treated cells. Therefore, we identify the first molecular regulators of lysosome tubulation and we show that TLs represent a more dynamic lysosome population.

30 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The lens of the eye is composed of fiber cells, which differentiate from epithelial cells and undergo programmed organelle degradation during terminal differentiation. Although autophagy, a major intracellular degradation system, is constitutively active in these cells, its physiological role has remained unclear. We have previously shown that Atg5-dependent macroautophagy is not necessary for lens organelle degradation, at least during the embryonic period. Here, we generated lens-specific Atg5 knockout mice and showed that Atg5 is not required for lens organelle degradation at any period of life. However, deletion of Atg5 in the lens results in age-related cataract, which is accompanied by accumulation of polyubiquitinated and oxidized proteins, p62, and insoluble crystallins, suggesting a defect in intracellular quality control. We also produced lens-specific Pik3c3 knockout mice to elucidate the possible involvement of Atg5-independent alternative autophagy, which is proposed to be dependent on Pik3c3 (also known as Vps34), in lens organelle degradation. Deletion of Pik3c3 in the lens does not affect lens organelle degradation, but leads to congenital cataract and a defect in lens development after birth likely due to an impairment of the endocytic pathway. Taken together, these results suggest that clearance of lens organelles is independent of macroautophagy. These findings also clarify the physiological role of Atg5 and Pik3c3 in quality control and development of the lens, respectively.
    Journal of Biological Chemistry 03/2013; 288(16). DOI:10.1074/jbc.M112.437103 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Efficient clearance of apoptotic cells by phagocytes is important for development, tissue homeostasis and the prevention of autoimmune responses. Phagosomes containing apoptotic cells undergo acidification and mature from Rab5-positive early to Rab7-positive late stages. Phagosomes finally fuse with lysosomes to form phagolysosomes that degrade apoptotic cells; however, the molecular mechanism underlying phagosome-lysosome fusion is not fully understood. Here, we show that the Caenorhabditis elegans Arf-like small GTPase Arl8 (ARL-8) is involved in phagolysosome formation and is required for the efficient removal of apoptotic cells. Loss of function of arl-8 resulted in the accumulation of apoptotic germ cells. Both the engulfment of the apoptotic cells by surrounding somatic sheath cells and the phagosomal maturation from RAB-5- to RAB-7-positive stages occurred in arl-8 mutants. However, the phagosomes failed to fuse with lysosomes in the arl-8 mutants, leading to the accumulation of RAB-7-positive phagosomes and the delayed degradation of apoptotic cells. ARL-8 localizes primarily to lysosomes and physically interacts with the homotypic fusion and protein sorting (HOPS) complex component VPS-41. Collectively, our findings reveal that ARL-8 facilitates apoptotic cell removal in vivo by mediating the phagosome-lysosome fusion during phagocytosis.
    Molecular biology of the cell 03/2013; 24(10). DOI:10.1091/mbc.E12-08-0628 · 4.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein and lipid transport along the endolysosomal system of eukaryotic cells depends on multiple fusion and fission events. Over the past few years, the molecular constituents of both fission and fusion machineries have been identified. Here, we focus on the mechanism of membrane fusion at endosomes, vacuoles and lysosomes, and in particular on the role of the two homologous tethering complexes called CORVET and HOPS. Both complexes are heterohexamers; they share four subunits, interact with Rab GTPases and soluble NSF attachment protein receptors (SNAREs) and can tether membranes. Owing to the presence of specific subunits, CORVET is a Rab5 effector complex, whereas HOPS can bind efficiently to late endosomes and lysosomes through Rab7. Based on the recently described overall structure of the HOPS complex and a number of in vivo and in vitro analyses, important insights into their function have been obtained. Here, we discuss the general function of both complexes in yeast and in metazoan cells in the context of endosomal biogenesis and maturation.
    Journal of Cell Science 03/2013; 126(Pt 6):1307-16. DOI:10.1242/jcs.107805 · 5.43 Impact Factor
Show more