Article

The Human Microbiome Project: A Community Resource for the Healthy Human Microbiome

The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America.
PLoS Biology (Impact Factor: 11.77). 08/2012; 10(8):e1001377. DOI: 10.1371/journal.pbio.1001377
Source: PubMed

ABSTRACT This manuscript describes the NIH Human Microbiome Project, including a brief review of human microbiome research, a history of the project, and a comprehensive overview of the consortium's recent collection of publications analyzing the human microbiome.

Download full-text

Full-text

Available from: Dirk Gevers, Jul 04, 2015
3 Followers
 · 
289 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The Human Microbiome Project (HMP) is a global initiative undertaken to identify and characterize the collection of human-associated microorganisms at multiple anatomic sites (skin, mouth, nose, colon, vagina), and to determine how intra-individual and inter-individual alterations in the microbiome influence human health, immunity, and different disease states. In this review article, we summarize the key findings and applications of the HMP that may impact pharmacology and personalized therapeutics. We propose a microbiome cloud model, reflecting the temporal and spatial uncertainty of defining an individual's microbiome composition, with examples of how intra-individual variations (such as age and mode of delivery) shape the microbiome structure. Additionally, we discuss how this microbiome cloud concept explains the difficulty to define a core human microbiome and to classify individuals according to their biome types. Detailed examples are presented on microbiome changes related to colorectal cancer, antibiotic administration, and pharmacomicrobiomics, or drug-microbiome interactions, highlighting how an improved understanding of the human microbiome, and alterations thereof, may lead to the development of novel therapeutic agents, the modification of antibiotic policies and implementation, and improved health outcomes. Finally, the prospects of a collaborative computational microbiome research initiative in Africa are discussed.
    Omics: a journal of integrative biology 05/2014; DOI:10.1089/omi.2014.0018 · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human milk oligosaccharides (HMOS) are not digested in the proximal intestine. In distal intestine, HMOS collectively modify the microbiota, but the response of individual bacteria to individual components of the HMOS is not well defined. Here, each of 25 major isolates of the human intestinal microbiota was fed individual major fucosylated and sialylated HMOS in anaerobic culture. This allowed for an assessment of the influence of specific HMOS on the growth and metabolic products of individual microbiota bacteria. Most Bifidobacteria spp. and Bacteroides spp. grew, induced α-l-fucosidase activity, and produced abundant lactate or short-chain fatty acids (SCFAs) when fed 2'-fucosyllactose (2'-FL), 3-FL, and lactodifucotetraose (LDFT). Lactobacillus delbrueckii ATCC7830, Enterococcus faecalis ATCC19433, and Streptococcus thermophilus ATCC19258 exhibited slight growth, pH reduction, and lactate production when supplemented with 2'-FL or 3-FL, but not LDFT. Supplementation with 3'-sialyllactose (3'-SL) and 6'-SL promoted moderate growth of Bifidobacterium longum JCM7007, 7009, 7010, 7011, 1272, 11347, ATCC15708, Bacteroides vulgatus ATCC8482, and B. thetaiotaomicron ATCC29148; accordingly, these bacteria exhibited greater neuraminidase activity and produced copious lactate, SCFA, or both. Lactobacillus delbrueckii ATCC7830 also consumed 6'-SL. In contrast, Clostridium spp., L. rhamnosus ATCC53103, E. faecalis ATCC29200, Staphylococcus spp., Enterobacter spp., and Escherichia coli K12 did not consume milk oligosaccharides nor produce appreciable acidic fermentation products. Specific Bifidobacteria and Bacteroides differentially digest specific individual HMOS, with the major fucosylated milk oligosaccharides most strongly stimulating key species of mutualist symbionts. This suggests strategies for treating dysbiosis of the microbiota and associated inflammatory disorders.
    Glycobiology 09/2013; DOI:10.1093/glycob/cwt065 · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Model organisms are an important tool for the development and validation of analytical approaches for proteomics and for the study of basic mechanisms of biological processes. The Initiative on Model Organism Proteomics (iMOP) organized a session during the 11th HUPO world congress in Boston in 2012, highlighting the potential of proteomics studies in model organism for the elucidation of important mechanisms regulating the interaction of humans with its environment. Major subjects were the use of model organisms for the study of molecular events triggering the interaction of host organisms with the surrounding microbiota and the elucidation of the complex influence of nutrition on the health of human beings.
    Proteomics 09/2013; 13(17):2537-41. DOI:10.1002/pmic.201370144 · 3.97 Impact Factor