Article

THAP1 Mutations and Dystonia Phenotypes: Genotype Phenotype Correlations

Department of Neurology, Faculty of Medicine University of Thessaly, Larissa, Greece. .
Movement Disorders (Impact Factor: 5.63). 09/2012; 27(10):1290-4. DOI: 10.1002/mds.25146
Source: PubMed

ABSTRACT THAP1 mutations have been shown to be the cause of DYT6. A number of different mutation types and locations in the THAP1 gene have been associated with a range of severity and dystonia phenotypes, but, as yet, it has been difficult to identify clear genotype phenotype patterns. Here, we screened the THAP1 gene in a further series of dystonia cases and evaluated the mutation pathogenicity in this series as well as previously reported mutations to investigate possible phenotype-genotype correlations. THAP1 mutations have been identified throughout the coding region of the gene, with the greatest concentration of variants localized to the THAP1 domain. In the additional cases analyzed here, a further two mutations were found. No obvious, indisputable genotype-phenotype correlation emerged from these data. However, we managed to find a correlation between the pathogenicity of mutations, distribution, and age of onset of dystonia. THAP1 mutations are an important cause of dystonia, but, as yet, no clear genotype-phenotype correlations have been identified. Greater mutation numbers in different populations will be important and mutation-specific functional studies will be essential to identify the pathogenicity of the various THAP1 mutations. © 2012 Movement Disorder Society.

Download full-text

Full-text

Available from: Kailash Bhatia, Aug 18, 2015
0 Followers
 · 
145 Views
  • Source
    • "Proband J was found to have a de novo frameshift mutation in the second codon of THAP domain-containing protein 1 (THAP1). THAP1 mutations, including frameshifts in the early part of the protein such as observed here, act in a dominant manner, causing torsion dystonia, DYT6 (Xiromerisiou et al., 2012). However, although proband J did demonstrate dystonic posturing, the THAP1 mutation has not been shown to be associated with epilepsy or any of the other clinical features exhibited by this proband (Table 1). "
    [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: The management of epilepsy in children is particularly challenging when seizures are resistant to antiepileptic medications, or undergo many changes in seizure type over time, or have comorbid cognitive, behavioral, or motor deficits. Despite efforts to classify such epilepsies based on clinical and electroencephalographic criteria, many children never receive a definitive etiologic diagnosis. Whole exome sequencing (WES) is proving to be a highly effective method for identifying de novo variants that cause neurologic disorders, especially those associated with abnormal brain development. Herein we explore the utility of WES for identifying candidate causal de novo variants in a cohort of children with heterogeneous sporadic epilepsies without etiologic diagnoses. METHODS: We performed WES (mean coverage approximately 40×) on 10 trios comprised of unaffected parents and a child with sporadic epilepsy characterized by difficult-to-control seizures and some combination of developmental delay, epileptic encephalopathy, autistic features, cognitive impairment, or motor deficits. Sequence processing and variant calling were performed using standard bioinformatics tools. A custom filtering system was used to prioritize de novo variants of possible functional significance for validation by Sanger sequencing. KEY FINDINGS: In 9 of 10 probands, we identified one or more de novo variants predicted to alter protein function, for a total of 15. Four probands had de novo mutations in genes previously shown to harbor heterozygous mutations in patients with severe, early onset epilepsies (two in SCN1A, and one each in CDKL5 and EEF1A2). In three children, the de novo variants were in genes with functional roles that are plausibly relevant to epilepsy (KCNH5, CLCN4, and ARHGEF15). The variant in KCNH5 alters one of the highly conserved arginine residues of the voltage sensor of the encoded voltage-gated potassium channel. In vitro analyses using cell-based assays revealed that the CLCN4 mutation greatly impaired ion transport by the ClC-4 2Cl(-) /H(+) -exchanger and that the mutation in ARHGEF15 reduced GEF exchange activity of the gene product, Ephexin5, by about 50%. Of interest, these seven probands all presented with seizures within the first 6 months of life, and six of these have intractable seizures. SIGNIFICANCE: The finding that 7 of 10 children carried de novo mutations in genes of known or plausible clinical significance to neuronal excitability suggests that WES will be of use for the molecular genetic diagnosis of sporadic epilepsies in children, especially when seizures are of early onset and difficult to control.
    Epilepsia 05/2013; DOI:10.1111/epi.12201 · 4.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The interpretation of novel missense variants is a challenge with increasing numbers of such variants being identified and a responsibility to report the findings in the context of all available scientific evidence. Various in silico bioinformatic tools have been developed that predict the likely pathogenicity of missense variants; however, their utility within the diagnostic setting requires further investigation. The aim of our study was to test the predictive value of two of these tools, sorting intolerant from tolerant (SIFT) and polymorphism phenotyping (PolyPhen), in a set of 141 missense variants (131 pathogenic, 8 benign) identified in the ABCC8, GCK, and KCNJ11 genes. Sixty-six of the mutations caused a gain of protein function, while 67 were loss-of-function mutations. The evolutionary conservation at each residue was also investigated using multiple sequence alignments from the UCSC genome browser. The sensitivity of SIFT and PolyPhen was reasonably high (69% and 68%, respectively), but their specificity was low (13% and 16%). Both programs were significantly better at predicting loss-of-function mutations than gain-of-function mutations (SIFT, p = 0.001; PolyPhen, p < or = 0.0001). The most reliable method for assessing the likely pathogenicity of a missense variant was to investigate the degree of conservation at the affected residue. Eighty-eight percent of the mutations affected highly conserved residues, while all of the benign variants occurred at residues that were polymorphic across multiple species. Although SIFT and PolyPhen may be useful in prioritizing changes that are likely to cause a loss of protein function, their low specificity means that their predictions should be interpreted with caution and further evidence to support/refute pathogenicity should be sought before reporting novel missense changes.
    Genetic Testing and Molecular Biomarkers 08/2010; 14(4):533-7. DOI:10.1089/gtmb.2010.0036 · 1.15 Impact Factor
  • Movement Disorders 09/2012; 27(10):1203-4. DOI:10.1002/mds.24991 · 5.63 Impact Factor
Show more