Article

Effects of protein molecular weight on the intrinsic material properties and release kinetics of wet spun polymeric microfiber delivery systems.

Department of Molecular Pharmacology, Physiology, and Biotechnology, Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA.
Acta biomaterialia (Impact Factor: 5.68). 08/2012; DOI: 10.1016/j.actbio.2012.08.005
Source: PubMed

ABSTRACT Wet spun microfibers have great potential for the design of multifunctional controlled release scaffolds. Understanding aspects of drug delivery and mechanical strength, specific to protein molecular weight, may aid in the optimization and development of wet spun fiber platforms. This study investigated the intrinsic material properties and release kinetics of poly(l-lactic acid) (PLLA) and poly(lactic-co-glycolic acid) (PLGA) wet spun microfibers encapsulating proteins with varying molecular weights. A cryogenic emulsion technique developed in our laboratory was used to encapsulate insulin (5.8kDa), lysozyme (14.3kDa) and bovine serum albumin (BSA, 66.0kDa) within wet spun microfibers (∼100μm). Protein loading was found to significantly influence mechanical strength and drug release kinetics of PLGA and PLLA microfibers in a molecular-weight-dependent manner. BSA encapsulation resulted in the most significant decrease in strength and ductility for both PLGA and PLLA microfibers. Interestingly, BSA-loaded PLGA microfibers had a twofold increase (8±2MPa to 16±1MPa) in tensile strength and a fourfold increase (3±1% to 12±6%) in elongation until failure in comparison to PLLA microfibers. PLGA and PLLA microfibers exhibited prolonged protein release up to 63days in vitro. Further analysis with the Korsmeyer-Peppas kinetic model determined that the mechanism of protein release was dependent on Fickian diffusion. These results emphasize the critical role protein molecular weight has on the properties of wet spun filaments, highlighting the importance of designing small molecular analogues to replace growth factors with large molecular weights.

0 Followers
 · 
91 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, the in-vitro release of proteins from novel, biodegradable phase-separated poly(ε-caprolactone-PEG)-block-poly(ε-caprolactone), [PCL-PEG]-b-[PCL]) multiblock copolymers with different block ratios and with a low melting temperature (49 - 55 ˚C), was studied. The effect of block ratio and PEG content of the polymers (i.e. 22.5, 37.5 and 52.5 wt%) as well as the effect of protein molecular weight (1.2, 5.8, 14, 29 and 66 kDa being goserelin, insulin, lysozyme, carbonic anhydrase and albumin, respectively) on protein release was investigated. Proteins were spray-dried with inulin as stabilizer to obtain a powder of uniform particle size. Spray-dried inulin-stabilized proteins were incorporated into polymeric implants by hot melt extrusion. All incorporated proteins fully preserved their structural integrity as determined after extraction of these proteins from the polymeric implants. In general, it was found that the release rate of the protein increased with decreasing molecular weight of the protein and with increasing the PEG content of the polymer. Swelling and degradation rate of the copolymer increased with increasing PEG content. Hence, release of proteins of various molecular weights from [PCL-PEG]-b-[PCL] multi-block copolymers can be tailored by varying the PEG content of the polymer.
    European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 03/2014; 87(2). DOI:10.1016/j.ejpb.2014.02.012 · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes is the fastest growing metabolic disease that fails to utilize glucose properly due to insulin deficiency or insulin resistance. Although several limited studies demonstrated non-invasive means of protein delivery, major hurdles for commercial success such as short half-life, enzymatic degradation and low bioavailability still remain to overcome. Methylcellulose (MC), a hydrophobically-modified cellulose derivative, forms temperature reversible gel in aqueous solution. However, as the gelling temperature of MC is higher than body temperature, it should be lowered to below body temperature for practical clinical application. In order to decrease gelling temperature and increase bio-compatibility and bio-elimination of MC, the molecular weight of MC was decreased using enzymatic degradation method and confirmed by gel permeation chromatography. Bio-elimination of low Molecular weight (LMw) MC was confirmed with non-invasive live image and ex vivo experiment. The exenatide and FGF 21 were physically loaded 100% into LMwMC-based thermo-reversible gel and slowly released from gel with no initial bursts. Exenatide-loaded LMwMC gel showed reduction of blood glucose level for a week in type 1 diabetic animal model. FGF 21-loaded LMwMC gel reduced glucose level to normal condition and maintained over 10days in type 2 diabetic animal model. LMwMC-based thermo-reversible and injectable hydrogel provides a strong potential to be efficient protein drug delivery system for the treatment of type 1 and type 2 diabetes.
    Journal of Controlled Release 09/2014; 194. DOI:10.1016/j.jconrel.2014.09.014 · 7.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nano/microfibrous polymeric constructs present various inherent advantages, such as highly porous architecture and high surface to volume ratio, making them attractive for tissue engineering purposes. Electrospinning is the most preferred technique for the fabrication of polymeric nanofibrous assemblies that can mimic the physical functions of native extracellular matrix greatly favoring cells attachment and thus influencing their morphology and activities. Different approaches have been developed to apply polymeric microfiber fabrication techniques (e.g. wet-spinning) for the obtainment of scaffolds with a three-dimensional network of micropores suitable for effective cells migration. Progress in additive manufacturing technology has led to the development of complex scaffold's shapes and microfibrous structures with a high degree of automation, good accuracy and reproducibility. Various loading methods, such as direct blending, coaxial electrospinning and microparticles incorporation, are enabling to develop customized strategies for the biofunctionalization of nano/microfibrous scaffolds with a tailored kinetics of release of different bioactive agents, ranging from small molecules, such as antibiotics, to protein drugs, such as growth factors, and even cells. Recent activities on the combination of different processing techniques and loading methods for the obtainment of biofunctionalized polymeric constructs with a complex multiscale structure open new possibilities for the development of biomimetic scaffolds endowed with a hierarchical architecture and a sophisticated release kinetics of different bioactive agents. This review is aimed at summarizing current advances in technologies and methods for manufacturing nano/microfibrous polymeric constructs suitable as tissue engineering scaffolds, and for their combination with different bioactive agents to promote tissue regeneration and therapeutic effects. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2014.
    Journal of Biomedical Materials Research Part B Applied Biomaterials 10/2014; 102(7):1562-1579. DOI:10.1002/jbm.b.33144 · 2.33 Impact Factor