Umbilical Cord Blood-Derived Aldehyde Dehydrogenase-Expressing Progenitor Cells Promote Recovery from Acute Ischemic Injury

Krembil Centre for Stem Cell Biology, Robarts Research Institute, Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada.
Stem Cells (Impact Factor: 7.7). 10/2012; 30(10):2248-60. DOI: 10.1002/stem.1206
Source: PubMed

ABSTRACT Umbilical cord blood (UCB) represents a readily available source of hematopoietic and endothelial precursors at early ontogeny. Understanding the proangiogenic functions of these somatic progenitor subtypes after transplantation is integral to the development of improved cell-based therapies to treat ischemic diseases. We used fluorescence-activated cell sorting to purify a rare (<0.5%) population of UCB cells with high aldehyde dehydrogenase (ALDH(hi) ) activity, a conserved stem/progenitor cell function. ALDH(hi) cells were depleted of mature monocytes and T- and B-lymphocytes and were enriched for early myeloid (CD33) and stem cell-associated (CD34, CD133, and CD117) phenotypes. Although these cells were primarily hematopoietic in origin, UCB ALDH(hi) cells demonstrated a proangiogenic transcription profile and were highly enriched for both multipotent myeloid and endothelial colony-forming cells in vitro. Coculture of ALDH(hi) cells in hanging transwells promoted the survival of human umbilical vein endothelial cells (HUVEC) under growth factor-free and serum-free conditions. On growth factor depleted matrigel, ALDH(hi) cells significantly increased tube-like cord formation by HUVEC. After induction of acute unilateral hind limb ischemia by femoral artery ligation, transplantation of ALDH(hi) cells significantly enhanced the recovery of perfusion in ischemic limbs. Despite transient engraftment in the ischemic hind limb, early recruitment of ALDH(hi) cells into ischemic muscle tissue correlated with increased murine von Willebrand factor blood vessel and CD31(+) capillary densities. Thus, UCB ALDH(hi) cells represent a readily available population of proangiogenic progenitors that promote vascular regeneration. This work provides preclinical justification for the development of therapeutic strategies to treat ischemic diseases using UCB-derived ALDH(hi) mixed progenitor cells. STEM Cells2012;30:2248-2260.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tumour microenvironment is complex and composed of many different constituents, including matricellular proteins such as connective tissue growth factor (CCN2), and is characterized by gradients in oxygen levels. In various cancers, hypoxia and CCN2 promote stem and progenitor cell properties, and regulate the proliferation, migration and phenotype of cancer cells. Our study was aimed at investigating the effects of hypoxia and CCN2 on chordoma cells, using the human U-CH1 cell line. We demonstrate that under basal conditions, U-CH1 cells express multiple CCN family members including CCN1, CCN2, CCN3 and CCN5. Culture of U-CH1 cells in either hypoxia or in the presence of recombinant CCN2 peptide promoted progenitor cell-like characteristics specific to the notochordal tissue of origin. Specifically, hypoxia induced the most robust increase in progenitor-like characteristics in U-CH1 cells, including increased expression of the notochord-associated markers T, CD24, FOXA1, ACAN and CA12, increased cell growth and tumour-sphere formation, and a decrease in the percentage of vacuolated cells present in the heterogeneous population. Interestingly, the effects of recombinant CCN2 peptide on U-CH1 cells were more pronounced under normoxia than hypoxia, promoting increased expression of CCN1, CCN2, CCN3 and CCN5, the notochord-associated markers SOX5, SOX6, T, CD24, and FOXA1 as well as increased tumour-sphere formation. Overall, this study highlights the importance of multiple factors within the tumour microenvironment and how hypoxia and CCN2 may regulate human chordoma cell behaviour.
    PLoS ONE 12/2014; 9(12):e115909. DOI:10.1371/journal.pone.0115909 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hematopoiesis and vascular homeostasis are closely linked to each other via subsets of circulating bone marrow-derived cells with potent activity to repair endothelial injury and promote angiogenesis. As a consequence, abnormalities in hematopoiesis will eventually affect vascular health. Pulmonary arterial hypertension (PAH) is a vascular disease characterized by severe remodeling of the pulmonary artery wall. Over the past decade, circulating hematopoietic cells have been assigned an increasing role in the remodeling, such that these cells have been used in new therapeutic strategies. More recently, research has been extended to the bone marrow where these cells originate to identify abnormalities in hematopoiesis that may underlie PAH. Here, we review the current literature and identify gaps in knowledge of the myeloid effects on PAH.
    12/2013; 3(4):781-91. DOI:10.1086/674769
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the last decades, human full-term cord blood was extensively investigated as a potential source of hematopoietic stem and progenitor cells (HSPCs). Despite the growing interest of regenerative therapies in preterm neonates, only little is known about the biological function of HSPCs from early preterm neonates under different perinatal conditions. Therefore, we investigated the concentration, the clonogenic capacity and the influence of obstetric/perinatal complications and maternal history on HSPC subsets in preterm and term cord blood.
    PLoS ONE 09/2014; 9(9):e106717. DOI:10.1371/journal.pone.0106717 · 3.53 Impact Factor


1 Download