Article

Up-regulation of FXR isoforms is not required for stimulation of the expression of genes involved in the lack of response of colon cancer to chemotherapy

Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Spain.
Pharmacological Research (Impact Factor: 3.98). 08/2012; 66(5):419-27. DOI: 10.1016/j.phrs.2012.07.005
Source: PubMed

ABSTRACT Several mechanisms are involved in the poor response of colorectal adenocarcinoma (CRAC) to pharmacological treatment. Since preliminary evidences have suggested that the enhanced expression of farnesoid X receptor (FXR) results in the stimulation of chemoresistance, we investigated whether FXR up-regulation is required for the expression of genes that characterize the multidrug resistance (MDR) phenotype of CRAC. Samples of tumours and adjacent healthy tissues were collected from naive patients. Using Taqman Low-Density Arrays, the abundance of mRNA of 87 genes involved in MDR was determined. Relevant changes were re-evaluated by conventional RT-QPCR. In healthy tissue the major FXR isoforms were FXRα2(+/-) (80%). In tumours this predominance persisted (91%) but was accompanied by a consistent reduction (3-fold) in total FXR mRNA. A lower FXR expression was confirmed by immunostaining, in spite of which there was a significant change in the expression of MDR genes. Pharmacological challenge was simulated "in vitro" using human CRAC cells (LS174T cells). Short-term (72h) treatment with cisplatin slightly increased the almost negligible expression of FXR in wild-type LS174T cells, whereas long-term (months) treatment induced a cisplatin-resistant phenotype (LS174T/R cells), which was accompanied by a 350-fold up-regulation of FXR, mainly FXRα1(+/-). However, the changed expression of MDR genes in LS174T/R cells was not markedly affected by incubation with the FXR antagonist Z-guggulsterone. In conclusion, although the enhanced expression of FXR may be involved in the stimulation of chemoresistance that occurs during pharmacological treatment, FXR up-regulation is not required for the presence of the MDR phenotype characteristic of CRAC.

0 Followers
 · 
76 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nuclear receptor FXR acts as an intracellular bile salt sensor that regulates synthesis and transport of bile salts within their enterohepatic circulation. In addition, FXR is involved in control of a variety of crucial metabolic pathways. Four FXR splice variants are known, i.e. FXRα1-4. Although these isoforms show differences in spatial and temporal expression patterns as well as in transcriptional activity, the physiological relevance hereof has remained elusive. We have evaluated specific roles of hepatic FXRα2 and FXRα4 by stably expressing these isoforms using liver-specific self-complementary adeno-associated viral vectors in total body FXR knock-out mice. The hepatic gene expression profile of the FXR knock-out mice was largely normalized by both isoforms. Yet, differential effects were also apparent; FXRα2 was more effective in reducing elevated HDL levels and transrepressed hepatic expression of Cyp8b1, the regulator of cholate synthesis. The latter coincided with a switch in hydrophobicity of the bile salt pool. Furthermore, FXRα2-transduction caused an increased neutral sterol excretion compared to FXRα4 without affecting intestinal cholesterol absorption. Our data show, for the first time, that hepatic FXRα2 and FXRα4 differentially modulate bile salt and lipoprotein metabolism in mice.
    PLoS ONE 12/2014; 9(12-12):e115028. DOI:10.1371/journal.pone.0115028 · 3.53 Impact Factor