Valproic Acid Decreases Urothelial Cancer Cell Proliferation and Induces Thrombospondin-1 Expression.

BMC Urology (Impact Factor: 1.41). 08/2012; 12(1):21. DOI: 10.1186/1471-2490-12-21
Source: PubMed


Prevention of bladder cancer recurrence is a central challenge in the management of this highly prevalent disease. The histone deacetylase inhibitor valproic acid (sodium valproate) has anti-angiogenic properties and has been shown to decrease bladder cancer growth in model systems. We have previously shown reduced expression of thrombospondin-1 in a mouse model and in human bladder cancer relative to normal urothelium. We speculated that inhibition of angiogenesis by valproate might be mediated by this anti-angiogenic protein.

Bladder cancer cell lines UMUC3 and T24 were treated with valproate or another histone deacetylase inhibitor, vorinostat, in culture for a period of three days. Proliferation was assessed by alamar blue reduction. Gene expression was evaluated by reverse transcription of RNA and quantitative PCR.

Proliferation assays showed treatment with valproate or vorinostat decreased proliferation in both cell lines. Histone deacetylase inhibition also increased relative expression of thrombospondin-1 up to 8 fold at 5 mM valproate.

Histone deacetylase inhibitors warrant further study for the prevention or treatment of bladder cancer.

Download full-text


Available from: Jay E Reeder,
  • Source
    • "Valproic acid (VPA), a potent anticonvulsant that also acts as an HDACI, produces a paucity of side-effects in humans, even when serum levels exceed the normal therapeutic range while receiving anti-epileptic therapy (6). The drug alters the expression of a critical subset of target genes (7), and this selective modulation probably explains the therapeutic efficiency and mild adverse effects. Furthermore, VPA also has useful pharmacokinetic properties, with a significantly longer biological half-life than the other HDACIs (8). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone deacetylase inhibitors (HDACIs) are a promising class of drugs that act as antiproliferative agents by promoting differentiation and inducing apoptosis. Valproic acid (VPA) is an HDACI that has been widely used as an anti-convulsant and shows promise as a chemotherapeutic drug for a number of tumor cells. The present study aimed to investigate the inhibitory effect of VPA on the viability of bladder cancer cells and its synergistic effect with chemotherapeutic agents in vitro and in vivo. The cell viability of human bladder cancer cell lines following treatment with VPA and/or VPA in combination with mitomycin C, cisplatin (DDP) and adriamycin were determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Hoechst staining was used to observe the morphology of the apoptotic cells. Survivin protein and acetylated histone H3 levels were quantified using western blot analysis. The in vivo tumor growth inhibition of VPA was determined in rats with N-methyl-N-nitrosourea-induced bladder cancer. VPA significantly inhibited the growth of the bladder cancer cells in a concentration- and time-dependent manner. Furthermore, improved results were achieved for tumor inhibition when VPA was combined with chemotherapeutic agents in vitro and in vivo. Survivin expression decreased and acetylated histone H3 expression increased in the bladder cancer cells following the treatment with VPA. Intravesical injections of VPA were able to inhibit tumor progression when combined with DDP. In conclusion, VPA acts as an HDACI that has a direct anticancer effect and markedly enhances the action of several chemotherapy agents. VPA may sensitize bladder cancer to anticancer drugs by downregulating survivin expression.
    Oncology letters 11/2013; 6(5):1492-1498. DOI:10.3892/ol.2013.1565 · 1.55 Impact Factor
  • Source

    Journal of Neuro-Oncology 04/2013; 113(3). DOI:10.1007/s11060-013-1129-z · 3.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiogenesis is an important process for tumor growth and progression of various solid tumors including urological cancers. Thrombospondins (TSPs), especially TSP-1, are representative "anti"-angiogenic molecules and many studies have clarified their pathological role and clinical significance in vivo and in vitro. In fact, TSP-1 expression is associated with clinicopathological features and prognosis in many types of cancers. However, TSP-1 is a multi-functional protein and its biological activities vary according to the specific tumor environments. Consequently, there is no general agreement on its cancer-related function in urological cancers, and detailed information regarding regulative mechanisms is essential for a better understanding of its therapeutic effects and prognostic values. Various "suppressor genes" and "oncogenes" are known to be regulators and TSP-1-related factors under physiological and pathological conditions. In addition, various types of fragments derived from TSP-1 exist in a given tissue microenvironment and TSP-1 derived-peptides have specific activities. However, a detailed pathological function in human cancer tissues is not still understood. This review will focus on the pathological roles and clinical significance of TSP-1 in urological cancers, including prostate cancer, renal cell carcinoma, and urothelial cancer. In addition, special attention is paid to TSP-1-derived peptide and TSP-1-based therapy for malignancies.
    International Journal of Molecular Sciences 06/2013; 14(6):12249-72. DOI:10.3390/ijms140612249 · 2.86 Impact Factor
Show more

We use cookies to give you the best possible experience on ResearchGate. Read our cookies policy to learn more.