Differential expression of extracellular matrix components in the Fallopian tubes throughout the menstrual cycle.

Reproductive Biology and Endocrinology (Impact Factor: 2.41). 08/2012; 10(1):56. DOI: 10.1186/1477-7827-10-56
Source: PubMed

ABSTRACT BACKGROUND: One of the unique characteristics of the female genital tract is the extensive tissue remodeling observed throughout the menstrual cycle. Multiple components of the extracellular matrix take part in this tissue rebuilding; however, the individual components involved have not been identified. METHODS: In the present study, the expression of extracellular matrix proteins and selected matrix metalloproteinase (MMP) activities in Fallopian tubes (FT) throughout the menstrual cycle were examined by PCR array, immunocytochemistry, zymography and bioinformatics. RESULTS: Of the eighty-four genes analyzed, eighty-three were expressed in the FT during at least one stage of the menstrual cycle. We observed a significant increase (>/=2-fold) in ADAMTS1, ADAMTS13, COL7A1, MMP3, MMP9, PECAM1, and THBS3 in the periovulatory phase compared to the follicular phase. Meanwhile, we observed a significant decrease (>/= 2-fold) in COL7A1, ICAM1, ITGA8, MMP16, MMP9, CLEC3B, SELE and TIMP2 in the lutheal phase compared to the periovulatory phase. Immunocytochemistry showed that MMP-3 and MMP-9 were localized in the endosalpinx during all phases of the menstrual cycle. Gelatin zymograms detected non-cycle-dependent protease activity. CONCLUSIONS: Several extracellular matrix components were regulated throughout the menstrual cycle in a cyclic pattern, suggesting a possible steroid regulation and a role in tissue remodeling and FT functions.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Playing a key role in the pathophysiology of many diseases, A Disintegrin-like and Metalloproteinase with Thrombospondin type-1 motif (ADAMTS) proteinases have been attracted more attention in obstetrics and gynecology. First discovered in 1997, this zinc-dependent proteinase family has 19 members today. These enzymes, which are located in the extracellular matrix (ECM), have a lot of very important functions, like matrix formation and resorption, angiogenesis, ovulation, and coagulation. In addition, in the pathogenesis of cancer, inflammation, arthritis, and connective tissue diseases, ADAMTS proteinases have crucial roles. The purpose of this review is to collect previous studies about obstetrics and gynecology that are related to ADAMTS enzymes and discuss the subject in many aspects to give an idea to the investigators who are interested in the subject.
    Journal of the Turkish German Gynecological Association. 01/2014; 15(4):250-5.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oviducts play a critical role in gamete and embryo transport, as well as supporting early embryo development. Progesterone receptor (PGR) is a transcription factor highly expressed in oviductal cells, while its activating ligand, progesterone, surges to peak levels as ovulation approaches. Progesterone is known to regulate oviduct cilia beating and muscular contractions in vitro, but how PGR may mediate this in vivo is poorly understood. We used PGR null mice to identify genes potentially regulated by PGR in the oviducts during the periovulatory period. Histologically, oviducts from PGR null mice showed no gross structural or morphological defects compared to normal, littermates. However, microarray analysis of oviducts at 8 h post-hCG revealed over 1000 PGR-dependent genes. Ten genes were selected for validation using reverse-transcription polymerase chain reaction (RT-PCR) based on their potential roles in oocyte/embryo transport and support. Eight genes were confirmed to be down-regulated (Adamts1, Itga8, Edn3, Prlr, Ptgfr, Des, Myocd and Actg2) and one up-regulated (Agtr2) in PGR null oviducts. Expression of these genes was also assessed in oviducts of naturally cycling mice during ovulation, day 1 and day 4 of pregnancy. Adamts1, Itga8, Edn3, Prlr and Ptgfr were significantly up-regulated in oviducts at ovulation/mating. However, most genes showed basal levels of expression at other times. The exceptions were Prlr and Ptgfr which showed pulsatile increases on day 1 and/or day 4 of pregnancy. This is the first, comprehensive study to elucidate putative PGR-regulated genes in the oviduct and reveals key downstream targets potentially mediating oocyte and embryo transport.
    Physiological Genomics 06/2014; · 2.81 Impact Factor

Full-text (2 Sources)

Available from
Jun 11, 2014