A Review of Disaster-Related Carbon Monoxide Poisoning: Surveillance, Epidemiology, and Opportunities for Prevention.

Shahed Iqbal, Scott A. Damon, and Fuyuen Y. Yip are with the Air Pollution and Respiratory Health Branch, Division of Environmental Hazards and Health Effects, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA. Jacquelyn H. Clower is with Cazador, contracted to Air Pollution and Respiratory Health Branch, Division of Environmental Hazards and Health Effects, National Center for Environmental Health, Centers for Disease Control and Prevention. Sandra A. Hernandez is with the National Center for Environmental Health, Centers for Disease Control and Prevention.
American Journal of Public Health (Impact Factor: 4.23). 08/2012; 102(10):1957-1963. DOI: 10.2105/AJPH.2012.300674
Source: PubMed

ABSTRACT Objectives. We conducted a systematic literature review to better understand aspects of disaster-related carbon monoxide (CO) poisoning surveillance and determine potentially effective prevention strategies. Methods. This review included information from 28 journal articles on disaster-related CO poisoning cases occurring between 1991 and 2009 in the United States. Results. We identified 362 incidents and 1888 disaster-related CO poisoning cases, including 75 fatalities. Fatalities occurred primarily among persons who were aged 18 years or older (88%) and male (79%). Hispanics and Asians accounted for 20% and 14% of fatal cases and 21% and 7% of nonfatal cases, respectively. Generators were the primary exposure source for 83% of fatal and 54% of nonfatal cases; 67% of these fatal cases were caused by indoor generator placement. Charcoal grills were a major source of exposure during winter storms. Most fatalities (94%) occurred at home. Nearly 89% of fatal and 53% of nonfatal cases occurred within 3 days of disaster onset. Conclusions. Public health prevention efforts could benefit from emphasizing predisaster risk communication and tailoring interventions for racial, ethnic, and linguistic minorities. These findings highlight the need for surveillance and CO-related information as components of disaster preparedness, response, and prevention.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Unintentional, non-fire-related (UNFR) carbon monoxide (CO) poisoning is a leading cause of poisoning in the United States. A comprehensive national CO poisoning surveillance framework is needed to obtain accurate estimates of CO poisoning burden and guide prevention efforts. This article describes the current national CO poisoning surveillance framework and reports the most recent national estimates. We analyzed mortality data from the National Vital Statistics System multiple cause-of-death file, emergency department (ED) and hospitalization data from the Healthcare Cost and Utilization Project's Nationwide Emergency Department Sample and Nationwide Inpatient Sample, hyperbaric oxygen treatment (HBOT) data from HBOT facilities, exposure data from the National Poison Data System, and CO alarm prevalence data from the American Housing Survey and the National Health Interview Survey. In the United States, 2,631 UNFR CO deaths occurred from 1999 to 2004, an average of 439 deaths annually. In 2007, there were 21,304 (71 per one million population) ED visits and 2,302 (eight per one million population) hospitalizations for confirmed cases of CO poisoning. In 2009, 552 patients received HBOT, and from 2000 to 2009, 68,316 UNFR CO exposures were reported to poison centers. Most nonfatal poisonings were among children (<18 years of age) and females; hospitalizations and deaths occurred more frequently among males and elderly people (>65 years of age). More poisonings occurred during winter months and in the Midwest and Northeast. UNFR CO poisoning poses a significant public health burden. Systematic evaluation of data sources coupled with modification and expansion of the surveillance framework might assist in developing effective prevention strategies.
    Public Health Reports 09/2012; 127(5):486-96. · 1.64 Impact Factor
  • Respiratory care 02/2013; 58(2):376-9. DOI:10.4187/respcare.02288 · 1.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context. On October 29, 2012, Hurricane Sandy made landfall and devastated New York's metropolitan area, causing widespread damage to homes and the utility infrastructure. Eight days later, snow and freezing temperatures from a nor'easter storm delayed utility restoration. Objective. To examine carbon monoxide (CO) exposures in the 2 weeks following Hurricane Sandy. Methods. This was a retrospective review of prospectively collected, standardized, and de-identified data sets. CO exposures and poisonings identified from two electronic surveillance systems, the New York City Poison Control Center (NYCPCC) and New York City's Syndromic Surveillance Unit, were compared with CO exposures from identical dates in 2008-2011. Data collected from the poison center included exposure type, CO source, poisoning type, treatment, and outcomes. Data collected from the Syndromic Surveillance Unit cases, which were identified by CO-related chief complaints presenting to NYC hospitals, included visit date and time, and patient demographics. Results. Four hundred thirty-seven CO exposures were reported to the NYCPCC, 355 from NYC callers, and the remainder from surrounding counties, which represented a significant increase when compared with CO exposures from identical dates in the preceding 4 years (p < 0.001). The total cases that were reported to the NYCPCC in 2008, 2009, 2010, and 2011 were 18, 13, 24, and 61, respectively. Excluding a single apartment fire that occurred (n = 311), the more common sources of CO were grilling indoors (26.2%) and generators (17.5%). Syndromic surveillance captured 70 cases; 6 cases were captured by both data sets. Conclusions. CO exposures following weather-related disasters are a significant public health concern, and the use of fuel-burning equipment is a clear source of storm-related morbidity and mortality. Multiple real-time epidemiologic surveillance tools are useful in estimating the prevalence of CO exposure and poisoning and are necessary to assist public health efforts to prevent CO poisoning during and after disasters.
    Clinical Toxicology 09/2013; 51(9). DOI:10.3109/15563650.2013.839030 · 3.12 Impact Factor
Show more