Article

Long-Term and Memory Immune Responses in Mice against Newcastle Disease Virus-Like Particles Containing Respiratory Syncytial Virus Glycoprotein Ectodomains

Department of Microbiology and Physiological Systems/Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Journal of Virology (Impact Factor: 4.65). 08/2012; 86(21):11654-62. DOI: 10.1128/JVI.01510-12
Source: PubMed

ABSTRACT Although respiratory syncytial virus (RSV) is a significant human pathogen, no RSV vaccines are available. We have reported that a virus-like particle (VLP) RSV vaccine candidate stimulated, in mice, robust, protective anti-RSV glycoprotein T(H)1 biased immune responses without enhanced respiratory disease upon RSV challenge. We report here an analysis of long-term responses to these VLPs. BALB/c mice immunized, without adjuvant, with VLPs or with infectious RSV generated anti-F and anti-G protein serum antibody responses that were stable over 14 months. Neutralizing antibody titers stimulated by VLPs were robust and durable for 14 months, whereas those of RSV-immunized animals declined significantly by 3 months. F protein-specific antibody-secreting cells were detected in the bone marrows of VLP-immunized mice but not in the marrows of RSV-immunized mice. Adoptive transfer of enriched splenic B cells from VLP-immunized mice into immunodeficient rag(-/-) mice resulted in anti-F and anti-G protein serum IgG antibody responses, in recipient mice, that were protective upon RSV challenge. In contrast, transfer of splenic B cells from RSV-immunized mice produced no detectable serum antibody in the recipients, nor could these mice inhibit RSV replication upon virus challenge. Immunization with VLPs stimulated the formation of germinal center GL7(+) B cells in normal mice. VLP immunization of TCR βδ(-/-) T-cell-deficient mice did not induce anti-RSV IgG antibodies, results consistent with T-cell-dependent immune responses. These results demonstrate that VLPs are effective in stimulating long-lived RSV-specific, T-cell-dependent neutralizing antibody-secreting cells and RSV-specific memory responses.

2 Followers
 · 
137 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory syncytial virus (RSV) is the most important pathogen for lower respiratory tract illness in infants and a high priority for vaccine development. We previously reported that RSV virus-like particles (VLPs) expressing either the fusion (F) or attachment (G) glycoprotein could confer protection against RSV challenge in BALB/c mice. Here, we tested the hypothesis that RSV VLP vaccine efficacy can be enhanced by mixing RSV VLP F and RSV VLP G, and we analyzed host responses to these RSV VLPs. Mice were immunized with VLP F, VLP G, or VLP F + VLP G. Lung viral loads in BALB/c mice following RSV strain A2-line19F challenge were lower in mice vaccinated with RSV VLP F + VLP G compared to VLP F- or VLP G-vaccinated mice. Vaccination with VLP F or VLP F + VLP G induced similar levels of neutralizing antibodies. The enhanced protection against RSV challenge induced by vaccination with RSV VLP F + VLP G correlated with CD8 T cells producing T helper type 1 cytokines. VLP G vaccination alone followed by challenge resulted in immunopathology similar to formalin-inactivated RSV vaccination and RSV challenge. Taken together, mixed VLP F + VLP G provided a high level of protection against RSV without vaccine-induced immunopathology, but VLP G vaccination enhanced disease when used alone.
    Antiviral Research 09/2014; 111. DOI:10.1016/j.antiviral.2014.09.005 · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study demonstrates that immunization with non-replicating virus-like particle (FFG VLP) containing RSV F and G glycoproteins together with RSV F DNA induced T helper type 1 antibody responses to RSV F similar to live RSV infection. Upon RSV challenge 21 weeks after immunization, FFG VLP vaccination induced protection against RSV infection as shown by clearance of lung viral loads, and the absence of eosinophil infiltrates, and did not cause lung pathology. In contrast, formalin-inactivated RSV (FI-RSV) vaccination showed significant pulmonary eosinophilia, severe mucus production, and extensive histopathology resulting in a hallmark of pulmonary pathology. Substantial lung pathology was also observed in mice with RSV re-infections. High levels of systemic and local inflammatory cytokine-secreting cells were induced in mice with FI-RSV but not with FFG VLP immunization after RSV challenge. Therefore, the results provide evidence that recombinant RSV FFG VLP vaccine can confer long-term protection against RSV without causing lung pathology.
    Antiviral Research 10/2014; 110. DOI:10.1016/j.antiviral.2014.07.016 · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory syncytial virus (RSV) is a major viral agent causing significant morbidity and mortality in young infants and the elderly. There is no licensed vaccine against RSV and it is a high priority to develop a safe RSV vaccine. We determined the immunogenicity and protective efficacy of combined virus-like particle and DNA vaccines presenting RSV glycoproteins (Fd.VLP) in comparison with formalin inactivated RSV (FI-RSV). Immunization of mice with Fd.VLP induced higher ratios of IgG2a/IgG1 antibody responses compared to those with FI-RSV. Upon live RSV challenge, Fd.VLP and FI-RSV vaccines were similarly effective in clearing lung viral loads. However, FI-RSV immunized mice showed a substantial weight loss and high levels of T helper type 2 (Th2) cytokines as well as extensive lung histopathology and eosinophil infiltration. In contrast, Fd.VLP immunized mice did not exhibit Th2 type cytokines locally and systemically, which might contribute to preventing vaccine-associated RSV lung disease. These results indicate that virus-like particles in combination with DNA vaccines represent a potential approach for developing a safe and effective RSV vaccine.
    Vaccine 08/2014; 32(44). DOI:10.1016/j.vaccine.2014.08.045 · 3.49 Impact Factor

Full-text (2 Sources)

Download
29 Downloads
Available from
May 16, 2014