Orphan kinases turn eccentric: A new class of cyclin Y-activated, membrane-targeted CDKs.

Division of Molecular Pathophysiology; Biocenter; Innsbruck Medical University; Innsbruck, Austria; Current affiliation: Institute for Research in Biomedicine; Barcelona, Spain.
Cell cycle (Georgetown, Tex.) (Impact Factor: 5.24). 10/2012; 11(20):3758-68. DOI: 10.4161/cc.21592
Source: PubMed

ABSTRACT PCTAIRE kinases (PCTK) are a highly conserved, but poorly characterized, subgroup of cyclin-dependent kinases (CDK). They are characterized by a conserved catalytic domain flanked by N- and C-terminal extensions that are involved in cyclin binding. Vertebrate genomes contain three highly similar PCTAIRE kinases (PCTK1,2,3, a.k.a., CDK16,17,18), which are most abundant in post-mitotic cells in brain and testis. Consistent with this restricted expression pattern, PCTK1 (CDK16) has recently been shown to be essential for spermatogenesis. PCTAIREs are activated by cyclin Y (CCNY), a highly conserved single cyclin fold protein. By binding to N-myristoylated CCNY, CDK16 is targeted to the plasma membrane. Unlike conventional cyclin-CDK interactions, binding of CCNY to CDK16 not only requires the catalytic domain, but also domains within the N-terminal extension. Interestingly, phosphorylation within this domain blocks CCNY binding, providing a novel means of cyclin-CDK regulation. By using these functional characteristics, we analyzed "PCTAIRE" sequence containing protein kinase genes in genomes of various organisms and found that CCNY and CCNY-dependent kinases are restricted to eumetazoa and possibly evolved along with development of a central nervous system. Here, we focus on the structure and regulation of PCTAIREs and discuss their established functions.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cyclin Y is a highly conserved cyclin among eumetazoans, yet its function and regulation are poorly understood. To search for Cyclin Y-interacting proteins, we screened a yeast two-hybrid library using human Cyclin Y (CCNY) as a bait and identified the following interactors: CDK14 and four members of the 14-3-3 family (ε, β, η, τ). The interaction between CCNY and 14-3-3 proteins was confirmed both in vitro and in vivo. The results showed that Ser-100 and Ser-326 residues in CCNY were crucial for 14-3-3 binding. Interestingly, binding of CCNY to 14-3-3 significantly enhanced the association between CCNY and CDK14. Our findings may add a new layer of regulation of CCNY binding to its kinase partner.
    Acta Biochimica et Biophysica Sinica 03/2014; · 1.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cyclin Y, a membrane associated cyclin, is capable of binding and activating CDK14. Here we report that human cyclin Y (CCNY) is a phosphoprotein in vivo and that phosphorylation of CCNY by CDK14 triggers its ubiquitination and degradation. Inactivation of either CDK14 or Cul1 results in accumulation of CCNY. An in vivo and in vitro mapping of CCNY phosphorylation sites by mass spectrometry revealed that the flanking regions of the conserved cyclin box are heavily phosphorylated. Phosphorylation of CCNY at Serines 71 and 73 creates a putative phospho-degron that controls its association with an SCF complex. Mutation of serine to alanine at these two sites stabilized CCNY and enhanced the activity of CCNY/CDK14 on phosphorylation of LRP6. Our results provide insight into autoregulation of the cyclin Y/CDK14 pair in CDK14 activation and cyclin Y turnover which is a process that is involved in membrane proximal signaling.
    FEBS letters 04/2014; · 3.54 Impact Factor