Sea anemones may thrive in a high CO 2 world

Global Change Biology (Impact Factor: 8.22). 04/2012; DOI: 10.1111/j.1365-2486.2012.02767.x

ABSTRACT Increased seawater pCO 2 , and in turn 'ocean acidification' (OA), is predicted to profoundly impact marine ecosystem diversity and function this century. Much research has already focussed on calcifying reef-forming corals (Class: Anthozoa) that appear particularly susceptible to OA via reduced net calcification. However, here we show that OA-like conditions can simultaneously enhance the ecological success of non-calcifying anthozoans, which not only play key ecological and biogeochemical roles in present day benthic ecosystems but also represent a model organism should calcifying anthozoans exist as less calcified (soft-bodied) forms in future oceans. Increased growth (abundance and size) of the sea anemone (Anemonia viridis) population was observed along a natural CO 2 gradient at Vulcano, Italy. Both gross photosynthesis (P G) and respiration (R) increased with pCO 2 indicating that the increased growth was, at least in part, fuelled by bottom up (CO 2 stimulation) of metabolism. The increase of P G outweighed that of R and the genetic identity of the symbiotic microalgae (Symbiodinium spp.) remained unchanged (type A19) suggesting proximity to the vent site relieved CO 2 limitation of the anemones' symbiotic microalgal population. Our observa-tions of enhanced productivity with pCO 2 , which are consistent with previous reports for some calcifying corals, con-vey an increase in fitness that may enable non-calcifying anthozoans to thrive in future environments, i.e. higher seawater pCO 2 . Understanding how CO 2 -enhanced productivity of non-(and less-) calcifying anthozoans applies more widely to tropical ecosystems is a priority where such organisms can dominate benthic ecosystems, in particular following localized anthropogenic stress.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marine anthozoans maintain a mutualistic symbiosis with dinoflagellates that are prolific producers of the algal secondary metabolite dimethylsulfoniopropionate (DMSP), the precursor of the climate-cooling trace gas dimethyl sulfide (DMS). Surprisingly, little is known about the physiological role of DMSP in anthozoans and the environmental factors that regulate its production. Here, we assessed the potential functional role of DMSP as an antioxidant and determined how future increases in seawater pCO2 may affect DMSP concentrations in the anemone Anemonia viridis along a natural pCO2 gradient at the island of Vulcano, Italy. There was no significant difference in zooxanthellae genotype and characteristics (density of zooxanthellae, and chlorophyll a) as well as protein concentrations between anemones from three stations along the gradient, V1 (3232 μatm CO2), V2 (682 μatm) and control (463 μatm), which indicated that A. viridis can acclimate to various seawater pCO2. In contrast, DMSP concentrations in anemones from stations V1 (33.23 ± 8.30 fmol cell(-1)) and V2 (34.78 ± 8.69 fmol cell(-1)) were about 35% lower than concentrations in tentacles from the control station (51.85 ± 12.96 fmol cell(-1)). Furthermore, low tissue concentrations of DMSP coincided with low activities of the antioxidant enzyme superoxide dismutase (SOD). Superoxide dismutase activity for both host (7.84 ± 1.37 U·mg(-1) protein) and zooxanthellae (2.84 ± 0.41 U·mg(-1) protein) at V1 was 40% lower than at the control station (host: 13.19 ± 1.42; zooxanthellae: 4.72 ± 0.57 U·mg(-1) protein). Our results provide insight into coastal DMSP production under predicted environmental change and support the function of DMSP as an antioxidant in symbiotic anthozoans.
    Ecology and Evolution 02/2014; 4(4):441-9. · 1.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study examines the potential effects of ocean acidification on countries and fisheries of the Mediterranean Sea. The implications for seafood security and supply are evaluated by examining the sensitivity of the Mediterranean to ocean acidification at chemical, biological, and macro-economic levels. The limited information available on impacts of ocean acidification on harvested (industrial, recreational, and artisanal fishing) and cultured species (aquaculture) prevents any biological impact assessment. However, it appears that non-developed nations around the Mediterranean, particularly those for which fisheries are increasing, yet rely heavily on artisanal fleets, are most greatly exposed to socioeconomic consequences from ocean acidification.
    Water 01/2014; 6:1719-1744. · 1.29 Impact Factor

Full-text (2 Sources)

Available from
May 23, 2014