Article

Period determination in the food-entrainable and methamphetamine-sensitive circadian oscillator(s).

Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235-1634, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 08/2012; 109(35):14218-23. DOI: 10.1073/pnas.1206213109
Source: PubMed

ABSTRACT Daily rhythmic processes are coordinated by circadian clocks, which are present in numerous central and peripheral tissues. In mammals, two circadian clocks, the food-entrainable oscillator (FEO) and methamphetamine-sensitive circadian oscillator (MASCO), are "black box" mysteries because their anatomical loci are unknown and their outputs are not expressed under normal physiological conditions. In the current study, the investigation of the timekeeping mechanisms of the FEO and MASCO in mice with disruption of all three paralogs of the canonical clock gene, Period, revealed unique and convergent findings. We found that both the MASCO and FEO in Per1(-/-)/Per2(-/-)/Per3(-/-) mice are circadian oscillators with unusually short (∼21 h) periods. These data demonstrate that the canonical Period genes are involved in period determination in the FEO and MASCO, and computational modeling supports the hypothesis that the FEO and MASCO use the same timekeeping mechanism or are the same circadian oscillator. Finally, these studies identify Per1(-/-)/Per2(-/-)/Per3(-/-) mice as a unique tool critical to the search for the elusive anatomical location(s) of the FEO and MASCO.

1 Follower
 · 
293 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although major research efforts have focused on how specific components of foodstuffs affect health, relatively little is known about a more fundamental aspect of diet, the frequency and circadian timing of meals, and potential benefits of intermittent periods with no or very low energy intakes. The most common eating pattern in modern societies, three meals plus snacks every day, is abnormal from an evolutionary perspective. Emerging findings from studies of animal models and human subjects suggest that intermittent energy restriction periods of as little as 16 h can improve health indicators and counteract disease processes. The mechanisms involve a metabolic shift to fat metabolism and ketone production, and stimulation of adaptive cellular stress responses that prevent and repair molecular damage. As data on the optimal frequency and timing of meals crystalizes, it will be critical to develop strategies to incorporate those eating patterns into health care policy and practice, and the lifestyles of the population.
    Proceedings of the National Academy of Sciences 11/2014; DOI:10.1073/pnas.1413965111 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our hypothesis is that direct targeting of brain areas involved in the perception of food as a rewarding stimulus accounts for initial hyperphagia caused by high-fat food (HFD). Because adolescents are more sensitive than adults to HFD, studies were performed in five-week old male mice. We analyzed the effect of acute exposition to HFD on c-Fos immunolabelling and we observed that this diet selectively increased c-Fos immunolabeling in the dorsomedial prefrontal cortex (PFC). Furthermore HFD triggered strong and long-lasting conditioned place-preference (CPP) behavior. We also found that the strength of conditioning correlated with the up-regulation of the expression of genes involved in dopaminergic transmission together with a decreased expression of the Per2 gene in the CPF. Our data are coherent with the involvement of the dorsomedial PFC in the perception of HFD as a positive reinforcer and suggest that sensory stimuli activate this brain area after HFD intake. Copyright © 2015 Elsevier B.V. All rights reserved.
    Behavioural Brain Research 01/2015; 283. DOI:10.1016/j.bbr.2015.01.039 · 3.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Circadian clocks in many brain regions and peripheral tissues are entrained by the daily rhythm of food intake. Clocks in one or more of these locations generate a daily rhythm of locomotor activity that anticipates a regular mealtime. Rats and mice can also anticipate two daily meals. Whether this involves 1 or 2 circadian clocks is unknown. To gain insight into how the circadian system adjusts to 2 daily mealtimes, male rats in a 12∶12 light-dark cycle were fed a 2 h meal either 4 h after lights-on or 4 h after lights-off, or a 1 h meal at both times. After 30 days, brain, blood, adrenal and stomach tissue were collected at 6 time points. Multiple clock genes from adrenals and stomachs were assayed by RT-PCR. Blood was assayed for corticosterone and ghrelin. Bmal1 expression was quantified in 14 brain regions by in situ hybridization. Clock gene rhythms in adrenal and stomach from day-fed rats oscillated in antiphase with the rhythms in night-fed rats, and at an intermediate phase in rats fed twice daily. Corticosterone and ghrelin in 1-meal rats peaked at or prior to the expected mealtime. In 2-meal rats, corticosterone peaked only prior the nighttime meal, while ghrelin peaked prior to the daytime meal and then remained elevated. The olfactory bulb, nucleus accumbens, dorsal striatum, cerebellum and arcuate nucleus exhibited significant daily rhythms of Bmal1 in the night-fed groups that were approximately in antiphase in the day-fed groups, and at intermediate levels (arrhythmic) in rats anticipating 2 daily meals. The dissociations between anticipatory activity and the peripheral clocks and hormones in rats anticipating 2 daily meals argue against a role for these signals in the timing of behavioral rhythms. The absence of rhythmicity at the tissue level in brain regions from rats anticipating 2 daily meals support behavioral evidence that circadian clock cells in these tissues may reorganize into two populations coupled to different meals.
    PLoS ONE 12/2014; 9(12):e112451. DOI:10.1371/journal.pone.0112451 · 3.53 Impact Factor

Full-text

Download
108 Downloads
Available from
May 22, 2014