Structure and assembly of a paramyxovirus matrix protein.

Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2032, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 08/2012; 109(35):13996-4000. DOI: 10.1073/pnas.1210275109
Source: PubMed

ABSTRACT Many pleomorphic, lipid-enveloped viruses encode matrix proteins that direct their assembly and budding, but the mechanism of this process is unclear. We have combined X-ray crystallography and cryoelectron tomography to show that the matrix protein of Newcastle disease virus, a paramyxovirus and relative of measles virus, forms dimers that assemble into pseudotetrameric arrays that generate the membrane curvature necessary for virus budding. We show that the glycoproteins are anchored in the gaps between the matrix proteins and that the helical nucleocapsids are associated in register with the matrix arrays. About 90% of virions lack matrix arrays, suggesting that, in agreement with previous biological observations, the matrix protein needs to dissociate from the viral membrane during maturation, as is required for fusion and release of the nucleocapsid into the host's cytoplasm. Structure and sequence conservation imply that other paramyxovirus matrix proteins function similarly.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Human respiratory syncytial virus is a human pathogen that causes severe infection of the respiratory tract. Current information about the structure of the virus and its interaction with host cells is limited. We carried out an electron cryotomographic characterization of cell culture-grown human respiratory syncytial virus to determine the architecture of the virion. The particles ranged from 100 nm to 1,000 nm in diameter and were spherical, filamentous, or a combination of the two. The filamentous morphology correlated with the presence of a cylindrical matrix protein layer linked to the inner leaflet of the viral envelope and with local ordering of the glycoprotein spikes. Recombinant viruses with only the fusion protein in their envelope showed that these glycoproteins were predominantly in the postfusion conformation, but some were also in the prefusion form. The ribonucleocapsids were left-handed, randomly oriented, and curved inside the virions. In filamentous particles, they were often adjacent to an intermediate layer of protein assigned to M2-1 (an envelope-associated protein known to mediate association of ribonucleocapsids with the matrix protein). Our results indicate important differences in structure between the Paramyxovirinae and Pneumovirinae subfamilies within the Paramyxoviridae, and provide fresh insights into host cell exit of a serious pathogen.
    Proceedings of the National Academy of Sciences 06/2013; · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Newcastle disease virus (NDV) is an infectious agent of a large variety of birds, including chicken, which poses a real threat to the agriculture industry. Matrix (M) proteins of NDV and many other viruses perform critical functions during viral assembly and budding from the host cell. M-proteins are well conserved and therefore are potential targets for antiviral therapies. To validate this, we expressed the NDV M-protein in its native form in Saccharomyces cerevisiae and in inclusion bodies in Escherichia coli. Proper refolding of the recombinant protein produced in E. coli was verified using circular dichroism and infrared spectroscopies and electron microscopy. Immunization of chickens with the NDV M-protein elicited significant serum antibody titers. However, the antibodies conferred little protection against the ND following lethal viral challenges. We conclude that the M-protein is not exposed on the surface of the host cell or the virus at any stage during its life cycle. We discuss how the conserved M-protein can further be exploited as an antiviral drug target.
    Applied Microbiology and Biotechnology 06/2013; · 3.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A quartet of attachment proteins and a trio of fusion protein subunits play the cell entry concert of parainfluenza viruses. While many of these viruses bind sialic acid to enter cells, wild type measles binds exclusively two tissue-specific proteins, the lymphatic receptor signaling lymphocytic activation molecule (SLAM), and the epithelial receptor nectin-4. SLAM binds near the stalk-head junction of the hemagglutinin. Nectin-4 binds a hydrophobic groove located between blades 4 and 5 of the hemagglutinin β-propeller head. The mutated vaccine strain hemagglutinin binds in addition the ubiquitous protein CD46, which explains attenuation. The measles virus entry concert has four movements. Andante misterioso: the virus takes over the immune system. Allegro con brio: it rapidly spreads in the upper airway's epithelia. 'Targeting' fugue: the versatile orchestra takes off. Presto furioso: the virus exits the host with thunder. Be careful: music is contagious.
    Current opinion in virology. 01/2014; 5C:16-23.

Full-text (2 Sources)

Available from
May 21, 2014