Article

Structure and assembly of a paramyxovirus matrix protein.

Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2032, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 08/2012; 109(35):13996-4000. DOI: 10.1073/pnas.1210275109
Source: PubMed

ABSTRACT Many pleomorphic, lipid-enveloped viruses encode matrix proteins that direct their assembly and budding, but the mechanism of this process is unclear. We have combined X-ray crystallography and cryoelectron tomography to show that the matrix protein of Newcastle disease virus, a paramyxovirus and relative of measles virus, forms dimers that assemble into pseudotetrameric arrays that generate the membrane curvature necessary for virus budding. We show that the glycoproteins are anchored in the gaps between the matrix proteins and that the helical nucleocapsids are associated in register with the matrix arrays. About 90% of virions lack matrix arrays, suggesting that, in agreement with previous biological observations, the matrix protein needs to dissociate from the viral membrane during maturation, as is required for fusion and release of the nucleocapsid into the host's cytoplasm. Structure and sequence conservation imply that other paramyxovirus matrix proteins function similarly.

0 Bookmarks
 · 
164 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epstein-Barr virus (EBV), an oncogenic gammaherpesvirus, causes acute infectious mononucleosis (AIM) and is linked to the development of several human malignancies. There is an urgent need for a vaccine that is safe, prevents infection and/or limits disease. Unique among human herpesviruses, glycoprotein (gp)350/220, which initiates EBV attachment to susceptible host cells, is the major ligand on the EBV envelope and is highly conserved. Interaction between gp350/220 and complement receptor type 2 (CR2)/CD21 and/or (CR1)/CD35 on B-cells is required for infection. Potent antibody responses to gp350/220 occur in animal models and humans. Thus, gp350/220 provides an attractive candidate for prophylactic subunit vaccine development. However, in a recent Phase II clinical trial immunization with soluble recombinant gp350 reduced the incidence of AIM, but did not prevent infection. Despite various attempts to produce an EBV vaccine, no vaccine is licensed. Herein we describe a sub-unit vaccine against EBV based on a novel Newcastle disease virus (NDV)-virus-like particle (VLP) platform consisting of EBVgp350/220 ectodomain fused to NDV-fusion (F) protein. The chimeric protein EBVgp350/220-F is incorporated into the membrane of a VLP composed of the NDV matrix and nucleoprotein. The particles resemble native EBV in diameter and shape and bind CD21 and CD35. Immunization of BALB/c mice with EBVgp350/220-F VLPs elicited strong, long-lasting neutralizing antibody responses when assessed in vitro. This chimeric VLP is predicted to provide a superior safety profile as it is efficiently produced in Chinese hamster ovary (CHO) cells using a platform devoid of human nucleic acid and EBV-transforming genes.
    Journal of Translational Medicine 02/2015; 13(40). DOI:10.1186/s12967-015-0415-2 · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to deliver their genetic material to host cells during infection, enveloped viruses use specialized proteins on their surfaces that bind cellular receptors and induce fusion of the viral and host membranes. In paramyxoviruses, a diverse family of single-stranded RNA (ssRNA) viruses, including several important respiratory pathogens, such as parainfluenza viruses, the attachment and fusion machinery is composed of two separate proteins: a receptor binding protein (hemagglutinin-neuraminidase [HN]) and a fusion (F) protein that interact to effect membrane fusion. Here we used negative-stain and cryo-electron tomography to image the 3-dimensional ultrastructure of human parainfluenza virus 3 (HPIV3) virions in the absence of receptor engagement. We observed that HN exists in at least two organizations. The first were arrays of tetrameric HN that lacked closely associated F proteins: in these purely HN arrays, HN adopted a "heads-down" configuration. In addition, we observed regions of complex surface density that contained HN in an apparently extended "heads-up" form, colocalized with prefusion F trimers. This colocalization with prefusion F prior to receptor engagement supports a model for fusion in which HN in its heads-up state and F may interact prior to receptor engagement without activating F, and that interaction with HN in this configuration is not sufficient to activate F. Only upon receptor engagement by HN's globular head does HN transmit its activating signal to F. Human parainfluenza virus 3 (HPIV3) is an enveloped, ssRNA virus that can cause serious respiratory illness, especially in children. HPIV3, like most other paramyxoviruses, uses two specialized proteins to mediate cell entry: the fusion protein (F) and the receptor binding protein, hemagglutinin-neuraminidase (HN). F becomes activated to mediate fusion during entry when it is triggered by a signal from HN. Here we used electron tomography to reconstruct the 3-dimensional ultrastructure of HPIV3. From these structures, we could discern the distribution and, in some cases, conformation of HN and F proteins, which provided an understanding of their interrelationship on virions. HN is found in arrays alone in one conformation and interspersed with prefusion F trimers in another. The data support a model of paramyxovirus membrane fusion in which HN associates with F before receptor engagement, and receptor engagement by the globular head of HN switches the HN-F interaction into one of fusion activation. Copyright © 2015 Gui et al.
    mBio 02/2015; 6(1):e02393-14. DOI:10.1128/mBio.02393-14 · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The paramyxovirus matrix (M) protein is a molecular scaffold required for viral morphogenesis and budding at the plasma membrane. Transient nuclear residence of some M proteins hints at non-structural roles. However, little is known regarding the mechanisms that regulate the nuclear sojourn. Previously, we found that the nuclear-cytoplasmic trafficking of Nipah virus M (NiV-M) is a prerequisite for budding, and is regulated by a bipartite nuclear localization signal (NLSbp), a leucine-rich nuclear export signal (NES), and monoubiquitination of the K258 residue within the NLSbp itself (NLSbp-lysine). To define whether the sequence determinants of nuclear trafficking identified in NiV-M are common among other Paramyxovirinae M proteins, we generated the homologous NES and NLSbp-lysine mutations in M proteins from the five major Paramyxovirinae genera. Using quantitative 3D confocal microscopy, we determined that the NES and NLSbp-lysine are required for the efficient nuclear export of the M proteins of Nipah virus, Hendra virus, Sendai virus, and Mumps virus. Pharmacological depletion of free ubiquitin or mutation of the conserved NLSbp-lysine to an arginine, which inhibits M ubiquitination, also results in nuclear and nucleolar retention of these M proteins. Recombinant Sendai virus (rSeV-eGFP) bearing the NES or NLSbp-lysine M mutants rescued at similar efficiencies to wild type. However, foci of cells expressing the M mutants displayed marked fusogenicity in contrast to wild type, and infection did not spread. Recombinant Mumps virus (rMuV-eGFP) bearing the homologous mutations showed similar defects in viral morphogenesis. Finally, shotgun proteomics experiments indicated that the interactomes of Paramyxovirinae M proteins are significantly enriched for components of the nuclear pore complex, nuclear transport receptors, and nucleolar proteins. We then synthesize our functional and proteomics data to propose a working model for the ubiquitin-regulated nuclear-cytoplasmic trafficking of cognate paramyxovirus M proteins that show a consistent nuclear trafficking phenotype.
    PLoS Pathogens 03/2015; 11(3):e1004739. DOI:10.1371/journal.ppat.1004739 · 8.06 Impact Factor

Full-text (2 Sources)

Download
27 Downloads
Available from
May 21, 2014