Article

Erratum to: Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis

Department of Cardiovascular Sciences, University of Leicester, Leicester Diabetes Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK.
Diabetologia (Impact Factor: 6.88). 08/2012; 55(11):2895-905. DOI: 10.1007/s00125-012-2677-z
Source: PubMed

ABSTRACT Sedentary (sitting) behaviours are ubiquitous in modern society. We conducted a systematic review and meta-analysis to examine the association of sedentary time with diabetes, cardiovascular disease and cardiovascular and all-cause mortality.
Medline, Embase and the Cochrane Library databases were searched for terms related to sedentary time and health outcomes. Cross-sectional and prospective studies were included. RR/HR and 95% CIs were extracted by two independent reviewers. Data were adjusted for baseline event rate and pooled using a random-effects model. Bayesian predictive effects and intervals were calculated to indicate the variance in outcomes that would be expected if new studies were conducted in the future.
Eighteen studies (16 prospective, two cross-sectional) were included, with 794,577 participants. Fifteen of these studies were moderate to high quality. The greatest sedentary time compared with the lowest was associated with a 112% increase in the RR of diabetes (RR 2.12; 95% credible interval [CrI] 1.61, 2.78), a 147% increase in the RR of cardiovascular events (RR 2.47; 95% CI 1.44, 4.24), a 90% increase in the risk of cardiovascular mortality (HR 1.90; 95% CrI 1.36, 2.66) and a 49% increase in the risk of all-cause mortality (HR 1.49; 95% CrI 1.14, 2.03). The predictive effects and intervals were only significant for diabetes.
Sedentary time is associated with an increased risk of diabetes, cardiovascular disease and cardiovascular and all-cause mortality; the strength of the association is most consistent for diabetes.

Full-text

Available from: Stuart J.H. Biddle, May 30, 2015
1 Follower
 · 
216 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Low levels of physical activity and high time spent in sedentary activities have been associated with unfavourable health outcomes in adolescents. During adolescence, physical activity declines and sedentary time increases, however little is known about whether the magnitude of these changes differs within or between school-time, after-school time, or at weekends. Methods Adolescents (n = 363) participating in the PEACH (Personal and Environmental Associations with Children’s Health) project provided accelerometer data at 12 and 15 years of age. Data were collected in 2008/2009 and 2012/2013. Time spent sedentary (<100 cpm), in light physical activity (LPA (100-2295 cpm) and in moderate to vigorous physical activity (MVPA: ≥ 2296 cpm) were generated for school-time, after-school time and for weekends using school-specific start and finish times. All data were analysed in 2014. Results The proportion of time spent sedentary significantly increased during school (+8.23%, 95% CI = 7.35 to 9.13), after-school (+6.99%, 95% CI = 5.91 to 8.07) and at weekends (+6.86%, 95% CI = 5.10 to 8.62). A parallel decrease was found in the proportion of time spent in LPA during school (-7.62%, 95% CI = -8.26 to -6.98), after-school (-7.01%, 95% CI = -7.74 to -6.28) and at weekends (-6.72%, 95% CI = -7.80 to -5.65). The proportion of time spent in MVPA remained relatively stable during school (-0.64, 95% CI = -1.11 to -0.18), after-school (0.04%, 95% CI = -0.58 to 0.67) and at weekends (-0.14%, 95% CI = -1.18 to 0.90). Conclusions Objectively measured sedentary time increased between 12 and 15 years of age during-school, after-school, and at weekends, suggesting that interventions aiming to reduce the age-associated changes in sedentary time are needed in all three time contexts. Future work should identify which sedentary activities change more than others to inform interventions which aim to minimise the increase in time spent sedentary during adolescence.
    International Journal of Behavioral Nutrition and Physical Activity 04/2015; 12(1). DOI:10.1186/s12966-015-0204-6 · 3.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Extended sitting time at work is viewed as a crucial public health issue. Encouraging workers to stand during their office hours via the installation of standing desks maybe one effective option to combat this. Here, we investigate whether the installation of high desks in the workplace can induce positive changes in the amount of physical activity (PA) and thereby lead to subsequent improvements in anthropometric parameters. Methods Thirty-two white-collar workers (22 men and 10 women, mean age 44.2) were randomly divided into two groups. A randomised crossover trial was performed for 13 weeks. During the experimental period, subjects completed their office work in a standing position using stationary high desks (standing work, SW) for 10 hours per week or more (SW period). The subjects were asked to maintain their normal sitting working habits during the control period (CONT period). The primary outcome was PA, which was assessed objectively using a triaxial accelerometer during weekdays and weekends. The secondary outcomes were anthropometric measurements. For each group and each parameter, the mean values during each period were recorded and were compared by paired t test. Results The daily total PA (10.2 ± 2.4 vs. 9.7 ± 2.3 METs · h/day, P = 0.043), MVPA (4.2 ± 2.2 vs. 3.7 ± 1.8 METs · h/day, P = 0.025), time spent in moderate PA (58.2 ± 20.7 vs. 53.4 ± 17.0 min/day, P = 0.019) and time spent in MVPA (62.8 ± 25.1 vs. 57.0 ± 20.3 min/day, P = 0.019) were significantly higher during the SW period compared to the CONT period. A weekdays verses weekends subanalysis revealed that these parameters were significantly higher during the SW period compared to the CONT period during weekdays only. No significant differences were noted before and after SW periods for most of the anthropometric measures, except waist circumference (83.7 ± 7.9 vs. 83.0 ± 7.9 cm, respectively, P = 0.007). Conclusions Standing work, via the installation of high desks, significantly increases moderate to vigorous physical activity, especially on weekdays. Trial registration UMIN-CRT, UMIN000016731, 7th March 2015.
    BMC Public Health 04/2015; 15(1). DOI:10.1186/s12889-015-1724-3 · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nonalcoholic fatty liver disease (NAFLD) is an independent risk factor for advanced liver disease, type 2 diabetes (T2DM), and cardiovascular diseases. The prevalence of NAFLD in the general population is around 30 %, but it is up to three times higher in those with T2DM. Among people with obesity and T2DM, the NAFLD epidemic also is worsening. Therefore, it is important to identify early metabolic alterations and to prevent these diseases and their progression. In this review, we analyze the pathophysiologic mechanisms leading to NAFLD, particularly, those common to T2DM, such as liver and muscle insulin resistance. However, it is mainly adipose tissue insulin resistance that results in increased hepatic de novo lipogenesis, inflammation, and lipotoxicity. Although genetics predispose to NAFLD, an unhealthy lifestyle, including high-fat/high-sugar diets and low physical activity, increases the risk. In addition, alterations in gut microbiota and environmental chemical agents, acting as endocrine disruptors, may play a role.
    Current Diabetes Reports 06/2015; 15(6):607. DOI:10.1007/s11892-015-0607-4 · 3.38 Impact Factor