Article

Small genomic rearrangements involving FMR1 support the importance of its gene dosage for normal neurocognitive function

Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, NAB 2015, Houston, TX, 77030, USA, .
Neurogenetics (Impact Factor: 2.66). 08/2012; 13(4):333-9. DOI: 10.1007/s10048-012-0340-y
Source: PubMed

ABSTRACT Fragile X syndrome, the most common form of X-linked intellectual disability, results from transcriptional silencing of the FMR1 gene. As of yet, the phenotypic consequences of the duplication of FMR1 have not been well characterized. In this report, we characterize the clinical features in two females with duplications involving only the FMR1 gene. In addition, we describe the phenotypes of two subjects with deletion of FMR1 and show that both loss and gain of FMR1 copy number can lead to overlapping neurodevelopmental phenotypes. Our report supports the notion that FMR1 gene dosage is important for normal neurocognitive function.

Download full-text

Full-text

Available from: Sau Wai Cheung, Dec 10, 2014
1 Follower
 · 
142 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In 1979 a "new" syndrome characterized by X-linked inheritance, hypogonadism, gynecomastia, intellectual disability, obesity, and short stature was described. The now-36-year-old propositus was recently referred to the genetics clinic for profound intellectual disability. Fragile X testing initially demonstrated a duplication of the FMR1 region, and upon further testing we identified an Xq27.3-q28 8.05 Mb-long duplication responsible for a syndrome. Our report describes the molecular and clinical aspects of the X-linked syndrome. Our results suggest that male patients with intellectual disability, hypogonadism, short stature, and gynecomastia should be further investigated for rearrangements in the Xq27.3-q28 region. In the future, when more cases of the duplication are identified, it may become possible to more accurately determine the specific genes affected by overexpression and responsible for the phenotype. © 2013 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 09/2013; 161(9). DOI:10.1002/ajmg.a.36034 · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X Syndrome (FXS) is the leading known monogenic form of autism and the most common form of inherited intellectual disability. FXS results from silencing the FMR1 gene during embryonic development, leading to loss of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein that regulates mRNA transport, stability, and translation. FXS is commonly thought of as a disease of synaptic dysfunction, however, FMRP expression is lost early in embryonic development, well before most synaptogenesis occurs. Recent studies suggest that loss of FMRP results in aberrant neurogenesis, but neurogenic defects have been variable. We investigated whether FMRP affects neurogenesis in Xenopus laevis tadpoles which express a homolog of FMR1. We used in vivo time-lapse imaging of neural progenitor cells and their neuronal progeny to evaluate the effect of acute loss or over-expression of FMRP on neurogenesis in the developing optic tectum. We complimented the time-lapse studies with SYTOX labeling to quantify apoptosis and CldU labeling to measure cell proliferation. Animals with increased or decreased levels of FMRP have significantly decreased neuronal proliferation and survival. They also have increased neuronal differentiation, but deficient dendritic arbor elaboration. The presence and severity of these defects was highly sensitive to FMRP levels. These data demonstrate that FMRP plays an important role in neurogenesis and suggest that endogenous FMRP levels are carefully regulated. These studies show promise in using Xenopus as an experimental system to study fundamental deficits in brain development with loss of FMRP and give new insight into the pathophysiology of FXS.
    01/2014; 2(1). DOI:10.1523/ENEURO.0055-14.2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X syndrome (FXS) is one of the most common causes of intellectual disability/developmental delay (ID/DD), especially in males. It is caused most often by CGG trinucleotide repeat expansions, and less frequently by point mutations and partial or full deletions of the FMR1 gene. The wide clinical spectrum of affected females partly depends on their X-inactivation status. Only few female ID/DD patients with microdeletions including FMR1 have been reported. We describe 3 female patients with 3.5-, 4.2- and 9.2-Mb de novo microdeletions in Xq27.3-q28 containing FMR1. X-inactivation was random in all patients, yet they presented with ID/DD as well as speech delay, macrocephaly and other features attributable to FXS. No signs of autism were present. Here, we further delineate the clinical spectrum of female patients with microdeletions. FMR1 expression studies gave no evidence for an absolute threshold below which signs of FXS present. Since FMR1 expression is known to be highly variable between unrelated females, and since FMR1 mRNA levels have been suggested to be more similar among family members, we further explored the possibility of an intrafamilial effect. Interestingly, FMR1 mRNA levels in all 3 patients were significantly lower than in their respective mothers, which was shown to be specific for patients with microdeletions containing FMR1.
    Molecular syndromology 02/2014; 5(2):65-75. DOI:10.1159/000357962