Article

Translational bioinformatics embraces big data.

Stanford University School of Medicine, 1265 Welch Road, Room X-229, Stanford, CA 94305, USA. E-mail: .
Yearbook of medical informatics 01/2012; 7(1):130-4.
Source: PubMed

ABSTRACT We review the latest trends and major developments in translational bioinformatics in the year 2011-2012. Our emphasis is on highlighting the key events in the field and pointing at promising research areas for the future. The key take-home points are: • Translational informatics is ready to revolutionize human health and healthcare using large-scale measurements on individuals. • Data-centric approaches that compute on massive amounts of data (often called "Big Data") to discover patterns and to make clinically relevant predictions will gain adoption. • Research that bridges the latest multimodal measurement technologies with large amounts of electronic healthcare data is increasing; and is where new breakthroughs will occur.

9 Followers
 · 
199 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Big data are receiving an increasing attention in biomedicine and healthcare. It is therefore important to understand the reason why big data are assuming a crucial role for the biomedical informatics community. The capability of handling big data is becoming an enabler to carry out unprecedented research studies and to implement new models of healthcare delivery. Therefore, it is first necessary to deeply understand the four elements that constitute big data, namely Volume, Variety, Velocity, and Veracity, and their meaning in practice. Then, it is mandatory to understand where big data are present, and where they can be beneficially collected. There are research fields, such as translational bioinformatics, which need to rely on big data technologies to withstand the shock wave of data that is generated every day. Other areas, ranging from epidemiology to clinical care, can benefit from the exploitation of the large amounts of data that are nowadays available, from personal monitoring to primary care. However, building big data-enabled systems carries on relevant implications in terms of reproducibility of research studies and management of privacy and data access; proper actions should be taken to deal with these issues. An interesting consequence of the big data scenario is the availability of new software, methods, and tools, such as map-reduce, cloud computing, and concept drift machine learning algorithms, which will not only contribute to big data research, but may be beneficial in many biomedical informatics applications. The way forward with the big data opportunity will require properly applied engineering principles to design studies and applications, to avoid preconceptions or over-enthusiasms, to fully exploit the available technologies, and to improve data processing and data management regulations.
    Yearbook of medical informatics 05/2014; 9(1). DOI:10.15265/IY-2014-0024
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Generally benefits and risks of vaccines can be determined from studies carried out as part of regulatory compliance, followed by surveillance of routine data; however there are some rarer and more long term events that require new methods. Big data generated by increasingly affordable personalised computing, and from pervasive computing devices is rapidly growing and low cost, high volume, cloud computing makes the processing of these data inexpensive.
    Yearbook of medical informatics 01/2014; 9(1):27-35. DOI:10.15265/IY-2014-0016
  • [Show abstract] [Hide abstract]
    ABSTRACT: Implementation of Electronic Health Record (EHR) systems continues to expand. The massive number of patient encounters results in high amounts of stored data. Transforming clinical data into knowledge to improve patient care has been the goal of biomedical informatics professionals for many decades, and this work is now increasingly recognized outside our field. In reviewing the literature for the past three years, we focus on "big data" in the context of EHR systems and we report on some examples of how secondary use of data has been put into practice.
    Yearbook of medical informatics 01/2014; 9(1):97-104. DOI:10.15265/IY-2014-0003