Article

Somatic Expansion in Mouse and Human Carriers of Fragile X Premutation Alleles

Section on Gene Structure and Disease, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
Human Mutation (Impact Factor: 5.05). 01/2013; 34(1). DOI: 10.1002/humu.22177
Source: PubMed

ABSTRACT Repeat expansion diseases result from expansion of a specific tandem repeat. The three fragile X-related disorders (FXDs) arise from germline expansions of a CGG•CCG repeat tract in the 5' UTR (untranslated region) of the fragile X mental retardation 1 (FMR1) gene. We show here that in addition to germline expansion, expansion also occurs in the somatic cells of both mice and humans carriers of premutation alleles. Expansion in mice primarily affects brain, testis, and liver with very little expansion in heart or blood. Our data would be consistent with a simple two-factor model for the organ specificity. Somatic expansion in humans may contribute to the mosaicism often seen in individuals with one of the FXDs. Because expansion risk and disease severity are related to repeat number, somatic expansion may exacerbate disease severity and contribute to the age-related increased risk of expansion seen on paternal transmission in humans. As little somatic expansion occurs in murine lymphocytes, our data also raise the possibility that there may be discordance in humans between repeat numbers measured in blood and that present in brain. This could explain, at least in part, the variable penetrance seen in some of these disorders.

Download full-text

Full-text

Available from: Daman Kumari, Jun 04, 2014
1 Follower
 · 
189 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA repair normally protects the genome against mutations that threaten genome integrity and thus cell viability. However, growing evidence suggests that in the case of the Repeat Expansion Diseases, disorders that result from an increase in the size of a disease-specific microsatellite, the disease-causing mutation is actually the result of aberrant DNA repair. A variety of proteins from different DNA repair pathways have thus far been implicated in this process. This review will summarize recent findings from patients and from mouse models of these diseases that shed light on how these pathways may interact to cause repeat expansion. Published by Elsevier B.V.
    DNA repair 04/2015; DOI:10.1016/j.dnarep.2015.04.019 · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X Syndrome (FXS) is the most frequent cause of inherited intellectual disability and autism. It is caused by the absence of the fragile X mental retardation 1 (FMR1) gene product, FMRP, an RNA-binding protein involved in the regulation of translation of a subset of brain mRNAs. In Fmr1 knockout (KO) mice, the absence of FMRP results in elevated protein synthesis in the brain as well as increased signaling of many translational regulators. Whether protein synthesis is also dysregulated in FXS patients is not firmly established. Here, we demonstrate that fibroblasts from FXS patients have significantly elevated rates of basal protein synthesis along with increased levels of phosphorylated mechanistic target of rapamycin (p-mTOR), phosphorylated extracellular signal regulated kinase 1/2 (p-ERK 1/2) and phosphorylated p70 ribosomal S6 kinase 1 (p-S6K1). Treatment with small molecules that inhibit S6K1, and a known FMRP target, phosphoinositide 3-kinase (P13K) catalytic subunit p110β, lowered the rates of protein synthesis in both control and patient fibroblasts. Our data thus demonstrate that fibroblasts from FXS patients may be a useful in vitro model to test the efficacy and toxicity of potential therapeutics prior to clinical trials, as well as for drug screening and designing personalized treatment approaches.This article is protected by copyright. All rights reserved
    Human Mutation 12/2014; 35(12). DOI:10.1002/humu.22699 · 5.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X-associated tremor and ataxia syndrome, Fragile X-associated primary ovarian insufficiency and Fragile X syndrome are Repeat Expansion Diseases caused by expansion of a CGG•CCG-repeat microsatellite in the 5' UTR of the FMR1 gene. To help understand the expansion mechanism responsible for these disorders we have crossed mice containing ∼147 CGG•CCG repeats in the endogenous murine Fmr1 gene with mice containing a null mutation in the gene encoding the mismatch repair protein MSH2. MSH2 mutations are associated with elevated levels of generalized microsatellite instability. However, we show here for the first time that in the FX mouse model all maternally and paternally transmitted expansions require Msh2. Even the loss of one Msh2 allele reduced the intergenerational expansion frequency significantly. Msh2 is also required for all somatic expansions and loss of even one functional Msh2 allele reduced the extent of somatic expansion in some organs. Tissues with lower tissue levels of MSH2 were more sensitive to the loss of a single Msh2 allele. This suggests that MSH2 is rate-limiting for expansion in this mouse model and that MSH2 levels may be a key factor that accounts for tissue-specific differences in expansion risk. This article is protected by copyright. All rights reserved.
    Human Mutation 01/2014; 35(1). DOI:10.1002/humu.22464 · 5.05 Impact Factor