Article

The structure of purified kinetochores reveals multiple microtubule-attachment sites.

1] Howard Hughes Medical Institute, Department of Biochemistry, University of Washington, Seattle, Washington, USA. [2] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. [3].
Nature Structural & Molecular Biology (Impact Factor: 11.63). 08/2012; 19(9):925-9. DOI: 10.1038/nsmb.2358
Source: PubMed

ABSTRACT Chromosomes must be accurately partitioned to daughter cells to prevent aneuploidy, a hallmark of many tumors and birth defects. Kinetochores are the macromolecular machines that segregate chromosomes by maintaining load-bearing attachments to the dynamic tips of microtubules. Here, we present the structure of isolated budding-yeast kinetochore particles, as visualized by EM and electron tomography of negatively stained preparations. The kinetochore appears as an ~126-nm particle containing a large central hub surrounded by multiple outer globular domains. In the presence of microtubules, some particles also have a ring that encircles the microtubule. Our data, showing that kinetochores bind to microtubules via multivalent attachments, lay the foundation to uncover the key mechanical and regulatory mechanisms by which kinetochores control chromosome segregation and cell division.

0 Bookmarks
 · 
102 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic cells may divide via the critical cellular process of cell division/mitosis, resulting in two daughter cells with the same genetic information. A large number of dedicated proteins are involved in this process and spatiotemporally assembled into three distinct super-complex structures/organelles, including the centrosome/spindle pole body, kinetochore/centromere and cleavage furrow/midbody/bud neck, so as to precisely modulate the cell division/mitosis events of chromosome alignment, chromosome segregation and cytokinesis in an orderly fashion. In recent years, many efforts have been made to identify the protein components and architecture of these subcellular organelles, aiming to uncover the organelle assembly pathways, determine the molecular mechanisms underlying the organelle functions, and thereby provide new therapeutic strategies for a variety of diseases. However, the organelles are highly dynamic structures, making it difficult to identify the entire components. Here, we review the current knowledge of the identified protein components governing the organization and functioning of organelles, especially in human and yeast cells, and discuss the multi-localized protein components mediating the communication between organelles during cell division.
    Frontiers in Microbiology 10/2014; 5:573. · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During eukaryotic cell division, chromosomes must be precisely partitioned to daughter cells. This relies on a mechanism to move chromosomes in defined directions within the parental cell. While sister chromatids are segregated from one another in mitosis and meiosis II, specific adaptations enable the segregation of homologous chromosomes during meiosis I to reduce ploidy for gamete production. Many of the factors that drive these directed chromosome movements are known, and their molecular mechanism has started to be uncovered. Here we review the mechanisms of eukaryotic chromosome segregation, with a particular emphasis on the modifications that ensure the segregation of homologous chromosomes during meiosis I. © 2015 Duro and Marston; Published by Cold Spring Harbor Laboratory Press.
    Genes & development. 01/2015; 29(2):109-122.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accurate chromosome segregation relies on dynamic interactions between microtubules (MTs) and the NDC80 complex, a major kinetochore MT-binding component. Phosphorylation at multiple residues of its Hec1 subunit may tune kinetochore-MT binding affinity for diverse mitotic functions, but molecular details of such phosphoregulation remain elusive. Using quantitative analyses of mitotic progression in mammalian cells, we show that Hec1 phosphorylation provides graded control of kinetochore-MT affinity. In contrast, modeling the kinetochore interface with repetitive MT binding sites predicts a switchlike response. To reconcile these findings, we hypothesize that interactions between NDC80 complexes and MTs are not constrained, i.e., the NDC80 complexes can alternate their binding between adjacent kinetochore MTs. Experiments using cells with phosphomimetic Hec1 mutants corroborate predictions of such a model but not of the repetitive sites model. We propose that accurate regulation of kinetochore-MT affinity is driven by incremental phosphorylation of an NDC80 molecular "lawn," in which the NDC80-MT bonds reorganize dynamically in response to the number and stability of MT attachments.
    The Journal of Cell Biology 06/2014; · 9.69 Impact Factor

Full-text (2 Sources)

Download
42 Downloads
Available from
May 28, 2014