Disentangling linear and nonlinear brain responses to evoked deep tissue pain

Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
Pain (Impact Factor: 5.64). 08/2012; 153(10):2140-51. DOI: 10.1016/j.pain.2012.07.014
Source: PubMed

ABSTRACT Pain stimuli evoke widespread responses in the brain. However, our understanding of the physiological significance underlying heterogeneous response within different pain-activated and -deactivated regions is still limited. Using functional magnetic resonance imaging, we evaluated brain responses to a wide range of stimulus intensity levels (1 innocuous, 7 painful) in order to estimate region-specific stimulus-response functions, which we hypothesized could illuminate that region's functional relationship to pain. Linear and nonlinear brain responses to pain were estimated through independent Legendre polynomial transformations of pain ratings within a general linear model. This approach identified at least 5 different, regionally specific activity profiles in the brain. Linearly increasing (eg, primary somatosensory/motor cortex, insulae) and intensity-independent (eg, secondary somatosensory cortex) activation was noted in traditional pain-processing areas, potentially reflecting sensory encoding and all-or-none salience responses, respectively. Multiple activity profiles were seen in areas of the default mode network (DMN): intensity-independent deactivation (eg, posterior cingulate cortex), linearly decreasing (eg, contralateral inferior parietal lobule), and quadratic (U-shaped; eg, medial prefrontal cortex). The latter observation suggests that: (1) different DMN subregions exhibit functional heterogeneity and (2) some DMN subregions respond in a percept-related manner to pain, suggesting closer linkage between the DMN and pain processing than previously thought. Future studies should apply a similar approach using innocuous stimuli of multiple intensities to evaluate whether the response profiles reported here can also be generalized to nonpainful somatosensory processing.


Available from: Marco Loggia, Mar 31, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human minds often wander away from their immediate sensory environment. It remains unknown whether such mind wandering is unsystematic or whether it lawfully relates to an individual's tendency to attend to salient stimuli such as pain and their associated brain structure/function. Studies of pain-cognition interactions typically examine explicit manipulation of attention rather than spontaneous mind wandering. Here we sought to better represent natural fluctuations in pain in daily life, so we assessed behavioral and neural aspects of spontaneous disengagement of attention from pain. We found that an individual's tendency to attend to pain related to the disruptive effect of pain on his or her cognitive task performance. Next, we linked behavioral findings to neural networks with strikingly convergent evidence from functional magnetic resonance imaging during pain coupled with thought probes of mind wandering, dynamic resting state activity fluctuations, and diffusion MRI. We found that (i) pain-induced default mode network (DMN) deactivations were attenuated during mind wandering away from pain; (ii) functional connectivity fluctuations between the DMN and periaqueductal gray (PAG) dynamically tracked spontaneous attention away from pain; and (iii) across individuals, stronger PAG-DMN structural connectivity and more dynamic resting state PAG-DMN functional connectivity were associated with the tendency to mind wander away from pain. These data demonstrate that individual tendencies to mind wander away from pain, in the absence of explicit manipulation, are subserved by functional and structural connectivity within and between default mode and antinociceptive descending modulation networks.
    Proceedings of the National Academy of Sciences 10/2013; DOI:10.1073/pnas.1312902110 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While patients suffering from fibromyalgia (FM) are known to exhibit hyperalgesia, the central mechanisms contributing to this altered pain processing are not fully understood. In this study we investigate potential dysregulation of the neural circuitry underlying cognitive and hedonic aspects of the subjective experience of pain such as anticipation of pain and of pain relief. FMRI was performed on 31 FM patients and 14 controls while they received cuff pressure pain stimuli on their leg, calibrated to elicit a pain rating of ~50/100. During the scan, subjects also received visual cues informing them of impending pain onset (pain anticipation) and pain offset (relief anticipation). Patients exhibited less robust activations during both anticipation of pain and anticipation of relief within regions commonly thought to be involved in sensory, affective, cognitive and pain-modulatory processes. In healthy controls, direct searches and region-of-interest analyses in the ventral tegmental area (VTA) revealed a pattern of activity compatible with the encoding of punishment: activation during pain anticipation and pain stimulation, but deactivation during relief anticipation. In FM patients, however, VTA activity during pain and anticipation (of both pain and relief) periods was dramatically reduced or abolished. FM patients exhibit disrupted brain responses to reward/punishment. The VTA is a source for reward-linked dopaminergic/GABAergic neurotransmission in the brain and our observations are compatible with reports of altered dopaminergic/GABAergic neurotransmission in FM. Reduced reward/punishment signaling in FM may relate to the augmented central processing of pain and reduced efficacy of opioid treatments in these patients. © 2013 American College of Rheumatology.
    Arthritis & Rheumatology 01/2014; 66(1). DOI:10.1002/art.38191 · 7.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent human neuroimaging studies have investigated the neural correlates of either noxious stimulus intensity or reported pain. While useful, analyzing brain relationships with stimulus intensity and behavior separately does not address how sensation and pain are linked in the central nervous system. In this paper, we used multi-level mediation analysis to identify brain mediators of pain-regions whose trial-by-trial responses to heat explained variability in the relationship between noxious stimulus intensity (across four levels) and pain. This approach has the potential to identify multiple circuits with complementary roles in pain genesis. Brain mediators of noxious heat effects on pain included targets of ascending nociceptive pathways (anterior cingulate, insula, SII, and medial thalamus) and also prefrontal and subcortical regions not associated with nociceptive pathways per se. Cluster analysis revealed that mediators were grouped into several distinct functional networks, including: a) somatosensory, paralimbic, and striatal-cerebellar networks that increased with stimulus intensity; and b) two networks co-localized with 'default mode' regions in which stimulus intensity-related decreases mediated increased pain. We also identified 'thermosensory' regions that responded to increasing noxious heat but did not predict pain reports. Finally, several regions did not respond to noxious input, but their activity predicted pain; these included ventromedial prefrontal cortex, dorsolateral prefrontal cortex, cerebellar regions, and supplementary motor cortices. These regions likely underlie both nociceptive and non-nociceptive processes that contribute to pain, such as attention and decision-making processes. Overall, these results elucidate how multiple distinct brain systems jointly contribute to the central generation of pain.
    Pain 05/2014; 155(8). DOI:10.1016/j.pain.2014.05.015 · 5.64 Impact Factor