Disentangling linear and nonlinear brain responses to evoked deep tissue pain

Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
Pain (Impact Factor: 5.84). 08/2012; 153(10):2140-51. DOI: 10.1016/j.pain.2012.07.014
Source: PubMed

ABSTRACT Pain stimuli evoke widespread responses in the brain. However, our understanding of the physiological significance underlying heterogeneous response within different pain-activated and -deactivated regions is still limited. Using functional magnetic resonance imaging, we evaluated brain responses to a wide range of stimulus intensity levels (1 innocuous, 7 painful) in order to estimate region-specific stimulus-response functions, which we hypothesized could illuminate that region's functional relationship to pain. Linear and nonlinear brain responses to pain were estimated through independent Legendre polynomial transformations of pain ratings within a general linear model. This approach identified at least 5 different, regionally specific activity profiles in the brain. Linearly increasing (eg, primary somatosensory/motor cortex, insulae) and intensity-independent (eg, secondary somatosensory cortex) activation was noted in traditional pain-processing areas, potentially reflecting sensory encoding and all-or-none salience responses, respectively. Multiple activity profiles were seen in areas of the default mode network (DMN): intensity-independent deactivation (eg, posterior cingulate cortex), linearly decreasing (eg, contralateral inferior parietal lobule), and quadratic (U-shaped; eg, medial prefrontal cortex). The latter observation suggests that: (1) different DMN subregions exhibit functional heterogeneity and (2) some DMN subregions respond in a percept-related manner to pain, suggesting closer linkage between the DMN and pain processing than previously thought. Future studies should apply a similar approach using innocuous stimuli of multiple intensities to evaluate whether the response profiles reported here can also be generalized to nonpainful somatosensory processing.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While patients suffering from fibromyalgia (FM) are known to exhibit hyperalgesia, the central mechanisms contributing to this altered pain processing are not fully understood. In this study we investigate potential dysregulation of the neural circuitry underlying cognitive and hedonic aspects of the subjective experience of pain such as anticipation of pain and of pain relief. FMRI was performed on 31 FM patients and 14 controls while they received cuff pressure pain stimuli on their leg, calibrated to elicit a pain rating of ~50/100. During the scan, subjects also received visual cues informing them of impending pain onset (pain anticipation) and pain offset (relief anticipation). Patients exhibited less robust activations during both anticipation of pain and anticipation of relief within regions commonly thought to be involved in sensory, affective, cognitive and pain-modulatory processes. In healthy controls, direct searches and region-of-interest analyses in the ventral tegmental area (VTA) revealed a pattern of activity compatible with the encoding of punishment: activation during pain anticipation and pain stimulation, but deactivation during relief anticipation. In FM patients, however, VTA activity during pain and anticipation (of both pain and relief) periods was dramatically reduced or abolished. FM patients exhibit disrupted brain responses to reward/punishment. The VTA is a source for reward-linked dopaminergic/GABAergic neurotransmission in the brain and our observations are compatible with reports of altered dopaminergic/GABAergic neurotransmission in FM. Reduced reward/punishment signaling in FM may relate to the augmented central processing of pain and reduced efficacy of opioid treatments in these patients. © 2013 American College of Rheumatology.
    Arthritis & Rheumatology 01/2014; 66(1). DOI:10.1002/art.38191 · 7.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic pain is a complex physiological and psychological phenomenon. Implicit learning mechanisms contribute to the development of chronic pain and to persistent changes in the central nervous system. We hypothesized that these central abnormalities can be remedied with Cognitive Behavioral Therapy (CBT). Specifically, since regions of the anterior Default Mode Network (DMN) are centrally involved in emotional regulation via connections with limbic regions, such as the amygdala, remediation of maladaptive behavioral and cognitive patterns as a result of CBT for chronic pain would manifest itself as a change in the intrinsic functional connectivity (iFC) between these prefrontal and limbic regions. Resting-state functional neuroimaging was performed in patients with chronic pain before and after 11-week CBT (n = 19), as well as a matched (ages 19–59, both sexes) active control group of patients who received educational materials (n = 19). Participants were randomized prior to the intervention. To investigate the differential impact of treatment on intrinsic functional connectivity (iFC), we compared pre–post differences in iFC between groups. In addition, we performed exploratory whole brain analyses of changes in fractional amplitude of low frequency fluctuations (fALFF). The course of CBT led to significant improvements in clinical measures of pain and self-efficacy for coping with chronic pain. Significant group differences in pre–post changes in both iFC and fALFF were correlated with clinical outcomes. Compared to control patients, iFC between the anterior DMN and the amygdala/periaqueductal gray decreased following CBT, whereas iFC between the basal ganglia network and the right secondary somatosensory cortex increased following CBT. CBT patients also had increased post-therapy fALFF in the bilateral posterior cingulate and the cerebellum. By delineating neuroplasticity associated with CBT-related improvements, these results add to mounting evidence that CBT is a valuable treatment option for chronic pain.
    01/2014; 5. DOI:10.1016/j.nicl.2014.07.008
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent human neuroimaging studies have investigated the neural correlates of either noxious stimulus intensity or reported pain. While useful, analyzing brain relationships with stimulus intensity and behavior separately does not address how sensation and pain are linked in the central nervous system. In this paper, we used multi-level mediation analysis to identify brain mediators of pain-regions whose trial-by-trial responses to heat explained variability in the relationship between noxious stimulus intensity (across four levels) and pain. This approach has the potential to identify multiple circuits with complementary roles in pain genesis. Brain mediators of noxious heat effects on pain included targets of ascending nociceptive pathways (anterior cingulate, insula, SII, and medial thalamus) and also prefrontal and subcortical regions not associated with nociceptive pathways per se. Cluster analysis revealed that mediators were grouped into several distinct functional networks, including: a) somatosensory, paralimbic, and striatal-cerebellar networks that increased with stimulus intensity; and b) two networks co-localized with 'default mode' regions in which stimulus intensity-related decreases mediated increased pain. We also identified 'thermosensory' regions that responded to increasing noxious heat but did not predict pain reports. Finally, several regions did not respond to noxious input, but their activity predicted pain; these included ventromedial prefrontal cortex, dorsolateral prefrontal cortex, cerebellar regions, and supplementary motor cortices. These regions likely underlie both nociceptive and non-nociceptive processes that contribute to pain, such as attention and decision-making processes. Overall, these results elucidate how multiple distinct brain systems jointly contribute to the central generation of pain.
    Pain 05/2014; 155(8). DOI:10.1016/j.pain.2014.05.015 · 5.84 Impact Factor


Available from
May 20, 2014