Functional control of the Candida albicans cell wall by catalytic protein kinase A subunit Tpk1

Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
Molecular Microbiology (Impact Factor: 5.03). 08/2012; 86(2):284-302. DOI: 10.1111/j.1365-2958.2012.08193.x
Source: PubMed

ABSTRACT The cyclic AMP protein kinase A pathway governs numerous biological features of the fungal pathogen Candida albicans. The catalytic protein kinase A subunits, Tpk1 (orf19.4892) and Tpk2 (orf19.2277), have divergent roles, and most studies indicate a more pronounced role for Tpk2. Here we dissect two Tpk1-responsive properties: adherence and cell wall integrity. Homozygous tpk1/tpk1 mutants are hyperadherent, and a Tpk1 defect enables biofilm formation in the absence of Bcr1, a transcriptional regulator of biofilm adhesins. A quantitative gene expression-based assay reveals that tpk1/tpk1 and bcr1/bcr1 genotypes show mixed epistasis, as expected if Tpk1 and Bcr1 act mainly in distinct pathways. Overexpression of individual Tpk1-repressed genes indicates that cell surface proteins Als1, Als2, Als4, Csh1 and Csp37 contribute to Tpk1-regulated adherence. Tpk1 is also required for cell wall integrity, but has no role in the gene expression response to cell wall inhibition by caspofungin. Interestingly, increased expression of the adhesin gene ALS2 confers a cell wall defect, as manifested in hypersensitivity to the cell wall inhibitor caspofungin and a shallow cell wall structure. Our findings indicate that Tpk1 governs C. albicans cell wall properties through repression of select cell surface protein genes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene expression dynamics have provided foundational insight into almost all biological processes. Here, we analyze expression of environmentally responsive genes and transcription factor genes to infer signals and pathways that drive pathogen gene regulation during invasive Candida albicans infection of a mammalian host. Environmentally responsive gene expression shows that there are early and late phases of infection. The early phase includes induction of zinc and iron limitation genes, genes that respond to transcription factor Rim101, and genes characteristic of invasive hyphal cells. The late phase includes responses related to phagocytosis by macrophages. Transcription factor gene expression also reflects early and late phases. Transcription factor genes that are required for virulence or proliferation in vivo are enriched among highly expressed transcription factor genes. Mutants defective in six transcription factor genes, three previously studied in detail (Rim101, Efg1, Zap1) and three less extensively studied (Rob1, Rpn4, Sut1), are profiled during infection. Most of these mutants have distinct gene expression profiles during infection as compared to in vitro growth. Infection profiles suggest that Sut1 acts in the same pathway as Zap1, and we verify that functional relationship with the finding that overexpression of either ZAP1 or the Zap1-dependent zinc transporter gene ZRT2 restores pathogenicity to a sut1 mutant. Perturbation with the cell wall inhibitor caspofungin also has distinct gene expression impact in vivo and in vitro. Unexpectedly, caspofungin induces many of the same genes that are repressed early during infection, a phenomenon that we suggest may contribute to drug efficacy. The pathogen response circuitry is tailored uniquely during infection, with many relevant regulatory relationships that are not evident during growth in vitro. Our findings support the principle that virulence is a property that is manifested only in the distinct environment in which host-pathogen interaction occurs.
    PLoS Biology 02/2015; 13(2):e1002076. DOI:10.1371/journal.pbio.1002076 · 11.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Septin proteins are conserved structural proteins that often demarcate regions of cell division. The essential nature of the septin ring, composed of several septin proteins, complicates investigation of the functions of the ring, although careful analysis in the model yeast Saccharomyces cerevisiae has elucidated the role that septins play in the cell cycle. Mutation analysis of non-essential septins in the pathogenic fungus Candida albicans has shown that septins also have vital roles in CWR, hyphal formation, and pathogenesis. While mutations in non-essential septins have been useful in establishing phenotypes, the septin defect is so slight that identifying causative associations between septins and downstream effectors has been difficult. In this work, we describe Decreased Abundance by mRNA Perturbation (DAmP) alleles of essential septins, which display a more severe septin defect than the defect observed in deletions of non-essential septins. The septin-DAmP alleles have allowed us to genetically separate the role of septins in hyphal growth and CWR and to identify the cyclic AMP pathway as a pathway that likely acts in a parallel manner with septins in hyphal morphogenesis.
    Eukaryotic Cell 09/2014; 13(11). DOI:10.1128/EC.00127-14 · 3.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A biofilm is a surface-associated microbial community. Diverse fungi are capable of biofilm growth. The significance of this growth form for infection biology is that biofilm formation on implanted devices is a major cause of recurrent infection. Biofilms also have limited drug susceptibility, making device-associated infection extremely difficult to treat. Biofilm-like growth can occur during many kinds of infection, even when an implanted device is not present. Here we summarize the current understanding of fungal biofilm formation, its genetic control, and the basis for biofilm drug resistance.
    Cold Spring Harbor Perspectives in Medicine 10/2014; 4(10). DOI:10.1101/cshperspect.a019729 · 7.56 Impact Factor