Article

Similarities and differences between effects of angiotensin III and angiotensin II on human prostate cancer cell migration and proliferation

Department of Comparative Endocrinology, Medical University of Lodz, Poland. Electronic address: .
Peptides (Impact Factor: 2.61). 08/2012; 37(2):200-6. DOI: 10.1016/j.peptides.2012.07.022
Source: PubMed

ABSTRACT Proliferation plays a critical role in tumor growth when cell migration is essential to invasion. The effect of Ang III and Ang II was evaluated on these important processes. Changes in the migration potential of prostate cancer cells were investigated using Wound Healing Test and a Transwell Migration Chamber with a 3μm pore size. Cell proliferation was measured with a BrdU Assay and Countess Automated Cell Counter, thus determining the influence of angiotensins on hormone-dependent (LNCaP) and hormone-independent (DU-145) human prostate cancer lines. The influence of Ang III and Ang II on classic receptors may be inhibited by Losartan or PD123319. Test peptide modulation of the AT1 and AT2 receptors was examined by Western Blot and fluorescent immunocytochemistry. The results indicate that Ang III promotes the migration of both LNCaP and DU-145 lines, whereas Ang II stimulates this process only in androgen-independent cells. Both angiotensin peptides can induce prostate cancer cell proliferation in a time- and dose-dependent manner. The obtained results show that Ang III and Ang II can modify the expression of classic receptors, particularly AT2. These results suggest that the investigated peptide can modulate cell migration and proliferation in prostate cancer cells. Angiotensins probably have a greater influence on proliferation in the early-stage prostate cancer model than hormone-independent cell lines. Assume also that Ang II can enhance the migration tendency aggressive prostate cancer cells, while Ang III does so more effective in non-metastatic cells.

0 Followers
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: Angiogenesis, a multistep process that results in new blood vessel formation from preexisting vasculature is essential for both the growth of solid tumour and for metastasis. Stimulation of vascular endothelial growth factor receptor (VEGFR), a transmembrane glycoprotein, results in mitogenesis. Within this family of receptors, VEGFR 2/kinase-insert-domain containing receptor appears to be principally upregulated during tumorigenesis. The aim of this study was to determine the expression of VEGFR-2/kinase-insert-domain containing receptor (KDR) and its correlation with angiotensin receptor type 1 (AT1-R) and clinical factors in endometrial carcinoma. METHODS: The expression of KDR and AT1-R was studied in endometrial carcinoma and normal endometrium by Real-time RT-PCR and Western blot analysis in 136 samples. The expression profile was correlated with the clinicopathological characteristics of endometrial adenocarcinoma. RESULTS: We noted a significant correlation between the expression of KDR and AT1-R in tumour grade G1, G2 and G3 (R(s)=0.50; p=0.002, R(s)=0.69; p=0.0001, R(s)=0.52; p=0.005, respectively). In stage I and stage II carcinoma, a significant correlation was also found between the expression of KDR and AT1-R (R(s)=0.70, p=0.0001, R(s)=0.67; p=0.001, respectively). Moreover significant correlation was observed between both KDR and AT1-R in tissue with different myometrial invasion (R(s)=0.54, p=0.0001, R(s)=0.68; p=0.0001; respectively for tumours with invasion into the inner half and invasion into the outer half). CONCLUSIONS: Basing on received correlation between AT1-R and KDR expression and previous results we speculate that angiotensin through AT1-R modulates KDR expression and thus have influence on local VEGF level. However, further studies are required to clarify the biological interaction between KDR, AT1-R and other hormonal regulators in endometrial carcinoma.
    Cytokine 12/2012; 61(2). DOI:10.1016/j.cyto.2012.11.017 · 2.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: INTRODUCTION: Angiotensin II is an effector peptide showing multiple physiological effects, such as regulation of vascular tone, tissue growth and remodelling. Postlactational involution of mammary gland involves changes such as high matrix metalloproteinase activity and release of bioactive fragments of fibronectin and laminin, which may be directly regulated by angiotensin II. The aim of the present study was to evaluate the influence of angiotensin II on proliferation, viability and motility of normal human mammary epithelial cells (184A1 cell line) and to determine the role of angiotensin II receptors in these processes. MATERIALS AND METHODS: Real-time reverse transcription-PCR, western blot and gelatin zymography were used to study the effect of angiotensin II on the expression of angiotensin receptors and matrix metalloproteinases in 184A1 cells. WST-1, AlamarBlue and BrdU assays were used as indicators of cell viability and proliferation after angiotensin II stimulation. Boyden chamber assays and monolayer wound migration assay were used to evaluate in vitro the changes in cell adhesion, migration and invasion. RESULTS: Angiotensin II increased motility of the 184A1 cells and the ability of wound closure. Modifications in cell-substrate adhesion systems and increased secretion and activity of matrix metalloproteinases were also observed. The effect of angiotensin II was abolished by blocking angiotensin type 1 receptor with specific inhibitors candesartan and losartan. CONCLUSIONS: The results indicate that angiotensin II modulates cell behaviour via AT1-R and stimulates secretion of MMP-2 by human mammary epithelial cells.
    Journal of Renin-Angiotensin-Aldosterone System 02/2013; DOI:10.1177/1470320313475904 · 2.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Evidence shows that angiotensin II type 1 receptor (AT1R) blockers may be associated with improved outcome in prostate cancer patients. It has been proposed that part of this effect could be due to angiotensin II type 2 receptor (AT2R) activation, the only active angiotensin II receptor in this situation. This study aimed to characterize the localization and expression of AT2R in prostate tissues and to assess its role on cell morphology and number in prostatic epithelial cells in primary culture. METHODS: AT2R and its AT2R-interacting protein (ATIP) expression were assessed on non-tumoral and tumoral human prostate using tissue microarray immunohistochemistry, binding assay, and Western blotting. AT2R effect on cell number was measured in primary cultures of epithelial cells from non-tumoral human prostate. RESULTS: AT2R was localized at the level of the acinar epithelial layer and its expression decreased in cancers with a Gleason score 6 or higher. In contrast, ATIP expression increased with cancer progression. Treatment of primary cell cultures from non-tumoral prostate tissues with C21/M024, a selective AT2R agonist, alone or in co-incubation with losartan, an AT1R antagonist, significantly decreased cell number compared to untreated cells. CONCLUSIONS: AT2R and ATIP are present in non-tumoral human prostate tissues and differentially regulated according to Gleason score. The decrease in non-tumoral prostate cell number upon selective AT2R stimulation suggests that AT2R may have a protective role against prostate cancer development. Treatment with a selective AT2R agonist could represent a new approach for prostate cancer prevention or for patients on active surveillance. Prostate © 2013 Wiley Periodicals, Inc.
    The Prostate 07/2013; 73(10). DOI:10.1002/pros.22653 · 3.57 Impact Factor