Similarities and differences between effects of angiotensin III and angiotensin II on human prostate cancer cell migration and proliferation

Department of Comparative Endocrinology, Medical University of Lodz, Poland. Electronic address: .
Peptides (Impact Factor: 2.62). 08/2012; 37(2):200-6. DOI: 10.1016/j.peptides.2012.07.022
Source: PubMed


Proliferation plays a critical role in tumor growth when cell migration is essential to invasion. The effect of Ang III and Ang II was evaluated on these important processes. Changes in the migration potential of prostate cancer cells were investigated using Wound Healing Test and a Transwell Migration Chamber with a 3μm pore size. Cell proliferation was measured with a BrdU Assay and Countess Automated Cell Counter, thus determining the influence of angiotensins on hormone-dependent (LNCaP) and hormone-independent (DU-145) human prostate cancer lines. The influence of Ang III and Ang II on classic receptors may be inhibited by Losartan or PD123319. Test peptide modulation of the AT1 and AT2 receptors was examined by Western Blot and fluorescent immunocytochemistry. The results indicate that Ang III promotes the migration of both LNCaP and DU-145 lines, whereas Ang II stimulates this process only in androgen-independent cells. Both angiotensin peptides can induce prostate cancer cell proliferation in a time- and dose-dependent manner. The obtained results show that Ang III and Ang II can modify the expression of classic receptors, particularly AT2. These results suggest that the investigated peptide can modulate cell migration and proliferation in prostate cancer cells. Angiotensins probably have a greater influence on proliferation in the early-stage prostate cancer model than hormone-independent cell lines. Assume also that Ang II can enhance the migration tendency aggressive prostate cancer cells, while Ang III does so more effective in non-metastatic cells.

Download full-text


Available from: Agnieszka Wanda Piastowska-Ciesielska, Jan 02, 2015
40 Reads
  • Source
    • "Ang II exerts major regulatory actions via activation of the Gq/11 protein-coupled angiotensin II receptor type 1 (AT1-R) [9, 15]. In many tissues (including the prostate), activation of the AT1 receptor leads to cell growth and differentiation responses through downstream signalling molecules that include phospholipase C, protein kinase C (PKC), the Ras-Raf-MEK-ERK signalling pathway, and signal transducers and activators of transcription (STATs) [15, 16]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Caveolin-1, the major structural protein of caveolae, interacts directly with the AT1 receptor. The biological functions of caveolin-1 in cancer are compound, multifaceted, and depend on cell type, tumour grade and cancer stage. The AT1-R-caveolin complex in caveolae may coordinate angiotensin II (Ang II) induced signalling. The aim of this study was to determine the effect of the angiotensin II receptor type 1 blocker candesartan on caveolin expression in human metastatic prostate adenocarcinoma cells PC-3. WST-1 and BrdU assays were used as indicators of cell viability and proliferation after angiotensin II and/or candesartan stimulation. Real-time RT-PCR and western blot were used to study the effect of Ang II and/or candesartan on the expression of Cav-1 and AT1-R in PC-3 cells. We found that the expression of caveolin-1 mRNA in the PC-3 cells treated with CV was significantly decreased in comparison with the control (2.9 ±0.17, 4.7 ±0.6, p < 0.05), whereas a higher caveolin-1 mRNA expression was observed in those after Ang II treatment (6.0 ±0.43, 4.7 ±0.6, p < 0.05). Protein analysis indicate that the expression of caveolin-1 protein in the PC-3 cells treated with candesartan was significantly decreased when compared with the control (0.69 ±0.05, 1.6 ±0.12, p < 0.05), whereas higher caveolin-1 protein expression was observed after Ang II treatment (2.5 ±0.20, 1.6 ±0.12, p < 0.05). These results provide new information on the action of candesartan and may improve the knowledge about AT1 receptor inhibitors, which can be potentially useful in prostate cancer therapy.
    Archives of Medical Science 08/2013; 9(4):739-44. DOI:10.5114/aoms.2012.30955 · 2.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Angiogenesis, a multistep process that results in new blood vessel formation from preexisting vasculature is essential for both the growth of solid tumour and for metastasis. Stimulation of vascular endothelial growth factor receptor (VEGFR), a transmembrane glycoprotein, results in mitogenesis. Within this family of receptors, VEGFR 2/kinase-insert-domain containing receptor appears to be principally upregulated during tumorigenesis. The aim of this study was to determine the expression of VEGFR-2/kinase-insert-domain containing receptor (KDR) and its correlation with angiotensin receptor type 1 (AT1-R) and clinical factors in endometrial carcinoma. Methods: The expression of KDR and AT1-R was studied in endometrial carcinoma and normal endometrium by Real-time RT-PCR and Western blot analysis in 136 samples. The expression profile was correlated with the clinicopathological characteristics of endometrial adenocarcinoma. Results: We noted a significant correlation between the expression of KDR and AT1-R in tumour grade G1, G2 and G3 (R(s)=0.50; p=0.002, R(s)=0.69; p=0.0001, R(s)=0.52; p=0.005, respectively). In stage I and stage II carcinoma, a significant correlation was also found between the expression of KDR and AT1-R (R(s)=0.70, p=0.0001, R(s)=0.67; p=0.001, respectively). Moreover significant correlation was observed between both KDR and AT1-R in tissue with different myometrial invasion (R(s)=0.54, p=0.0001, R(s)=0.68; p=0.0001; respectively for tumours with invasion into the inner half and invasion into the outer half). Conclusions: Basing on received correlation between AT1-R and KDR expression and previous results we speculate that angiotensin through AT1-R modulates KDR expression and thus have influence on local VEGF level. However, further studies are required to clarify the biological interaction between KDR, AT1-R and other hormonal regulators in endometrial carcinoma.
    Cytokine 12/2012; 61(2). DOI:10.1016/j.cyto.2012.11.017 · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Angiotensin II is an effector peptide showing multiple physiological effects, such as regulation of vascular tone, tissue growth and remodelling. Postlactational involution of mammary gland involves changes such as high matrix metalloproteinase activity and release of bioactive fragments of fibronectin and laminin, which may be directly regulated by angiotensin II. The aim of the present study was to evaluate the influence of angiotensin II on proliferation, viability and motility of normal human mammary epithelial cells (184A1 cell line) and to determine the role of angiotensin II receptors in these processes. Materials and methods: Real-time reverse transcription-PCR, western blot and gelatin zymography were used to study the effect of angiotensin II on the expression of angiotensin receptors and matrix metalloproteinases in 184A1 cells. WST-1, AlamarBlue and BrdU assays were used as indicators of cell viability and proliferation after angiotensin II stimulation. Boyden chamber assays and monolayer wound migration assay were used to evaluate in vitro the changes in cell adhesion, migration and invasion. Results: Angiotensin II increased motility of the 184A1 cells and the ability of wound closure. Modifications in cell-substrate adhesion systems and increased secretion and activity of matrix metalloproteinases were also observed. The effect of angiotensin II was abolished by blocking angiotensin type 1 receptor with specific inhibitors candesartan and losartan. Conclusions: The results indicate that angiotensin II modulates cell behaviour via AT1-R and stimulates secretion of MMP-2 by human mammary epithelial cells.
    Journal of Renin-Angiotensin-Aldosterone System 02/2013; 15(4). DOI:10.1177/1470320313475904 · 2.40 Impact Factor
Show more