Elevated Protein Kinase C-δ Contributes to Aneurysm Pathogenesis Through Stimulation of Apoptosis and Inflammatory Signaling.

1111 Highland Avenue, WIMR 5120, Madison, WI 53705. .
Arteriosclerosis Thrombosis and Vascular Biology (Impact Factor: 6.34). 08/2012; 32(10):2493-502. DOI: 10.1161/ATVBAHA.112.255661
Source: PubMed

ABSTRACT Apoptosis of smooth muscle cells (SMCs) is a prominent pathological characteristic of abdominal aortic aneurysm (AAA). We have previously shown that SMC apoptosis stimulates proinflammatory signaling in a mouse model of AAA. Here, we test whether protein kinase C-δ (PKCδ), an apoptotic mediator, participates in the pathogenesis of AAA by regulating apoptosis and proinflammatory signals.
Mouse experimental AAA is induced by perivascular administration of CaCl(2). Mice deficient in PKCδ exhibit a profound reduction in aneurysmal expansion, SMC apoptosis, and transmural inflammation as compared with wild-type littermates. Delivery of PKCδ to the aortic wall of PKCδ(-/-) mice restores aneurysm, whereas overexpression of a dominant negative PKCδ mutant in the aorta of wild-type mice attenuates aneurysm. In vitro, PKCδ(-/-) aortic SMCs exhibit significantly impaired monocyte chemoattractant protein-1 production. Ectopic administration of recombinant monocyte chemoattractant protein-1 to the arterial wall of PKCδ(-/-) mice restores inflammatory response and aneurysm development.
PKCδ is an important signaling mediator for SMC apoptosis and inflammation in a mouse model of AAA. By stimulating monocyte chemoattractant protein-1 expression in aortic SMCs, upregulated PKCδ exacerbates the inflammatory process, in turn perpetuating elastin degradation and aneurysmal dilatation. Inhibition of PKCδ may serve as a potential therapeutic strategy for AAA.

  • Source
    Arteriosclerosis Thrombosis and Vascular Biology 01/2015; 35(1):2-6. DOI:10.1161/ATVBAHA.114.304877 · 5.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective Murine models have proved instrumental in studying various aspects of abdominal aortic aneurysm (AAA), from identification of underlying pathophysiologic changes to the development of novel therapeutic strategies. In the current study, we describe a new model in which an elastase-treated donor aorta is transplanted to a recipient mouse and allowed to progress to aneurysm. We hypothesized that by transplanting an elastase-treated abdominal aorta of one genotype to a recipient mouse of a different genotype, one can differentiate pathophysiologic factors that are intrinsic to the aortic wall from those stemming from circulation and other organs. Methods Elastase-treated aorta was transplanted to the infrarenal abdominal aorta of recipient mice by end-to-side microsurgical anastomosis. Heat-inactivated elastase-treated aorta was used as a control. Syngeneic transplants were performed with use of 12-week-old C57BL/6 littermates. Transplant grafts were harvested from recipient mice on day 7 or day 14 after surgery. The aneurysm outcome was measured by aortic expansion, elastin degradation, proinflammatory cytokine expression, and inflammatory cell infiltration and compared with that produced with the established, conventional elastase infusion model. Results The surgical technique success rate was 75.6%, and the 14-day survival rate was 51.1%. By day 14 after surgery, all of the elastase-treated transplanted abdominal aortas had dilated and progressed to AAAs, defined as 100% or more increase in the maximal external diameter compared with that measured before elastase perfusion, whereas none of the transplanted aortas pretreated with inactive elastase became aneurysmal (percentage increase in maximum aortic diameter: 159.36% ± 23.27%, transplanted elastase, vs 41.46% ± 9.34%, transplanted inactive elastase). Aneurysm parameters, including elastin degradation and infiltration of macrophages and T lymphocytes, were found to be identical to those observed in the conventional elastase model. Quantitative polymerase chain reaction analysis revealed similarly increased levels of proinflammatory cytokines (relative changes of mRNA in the conventional elastase model vs transplant model: tumor necrosis factor α, 1.71 ± 0.27 vs 2.93 ± 0.86; monocyte chemoattractant protein 1, 2.36 ± 0.58 vs 2.87 ± 0.51; chemokine (C-C motif) ligand 5, 3.37 ± 0.92 vs 3.46 ± 0.83; and interferon γ, 3.09 ± 0.83 vs 5.30 ± 1.69). Using green fluorescent protein transgenic mice as donors or recipients, we demonstrated that a small quantity of mononuclear leukocytes in the transplant grafts bared the genotype of the donors. Conclusions Transplanted elastase-treated abdominal aorta could develop to aneurysm in recipient mice. This AAA transplant model can be used to examine how the microenvironment of a transplanted aneurysmal aorta may be altered by the contributions of the “global” environment of the recipient.
    Journal of Vascular Surgery 06/2014; DOI:10.1016/j.jvs.2014.05.019 · 2.98 Impact Factor
  • Source

Full-text (2 Sources)

Available from
May 19, 2014