Article

The Thyroid Axis Is Regulated by NCoR1 via Its Actions in the Pituitary.

Endocrinology, Metabolism and Diabetes, 330 Brookline Avenue, CLS-0728, Boston, Massachusetts 02115. .
Endocrinology (Impact Factor: 4.64). 08/2012; 153(10):5049-57. DOI: 10.1210/en.2012-1504
Source: PubMed

ABSTRACT TSH is the most important biomarker in the interpretation of thyroid function in man. Its levels are determined by circulating thyroid hormone (TH) levels that feed back centrally to regulate the expression of the subunits that comprise TSH from the pituitary. The nuclear corepressor 1 (NCoR1), is a critical coregulator of the TH receptor (TR) isoforms. It has been established to play a major role in the control of TSH secretion, because mice that express a mutant NCoR1 allele (NCoRΔID) that cannot interact with the TR have normal TSH levels despite low circulating TH levels. To determine how NCoR1 controls TSH secretion, we first developed a mouse model that allowed for induction of NCoRΔID expression postnatally to rule out a developmental effect of NCoR1. Expression of NCoRΔID postnatally led to a drop in TH levels without a compensatory rise in TSH production, indicating that NCoR1 acutely controls both TH production and feedback regulation of TSH. To demonstrate that this was a cell autonomous function of NCoR1, we expressed NCoRΔID in the pituitary using a Cre driven by the glycoprotein α-subunit promoter (P-ΔID mice). Importantly, P-ΔID mice have low TH levels with decreased TSH production. Additionally, the rise in TSH during hypothyroidism is blunted in P-ΔID mice. Thus, NCoR1 plays a critical role in TH-mediated regulation of TSH in the pituitary by regulating the repressive function of the TR. Furthermore, these studies suggest that endogenous NCoR1 levels in the pituitary could establish the set point of TSH secretion.

0 Followers
 · 
74 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study addresses the in vivo and in vitro expression pattern of three genes that are operative in the thyrotroph subpopulation of anterior pituitary cells: glycoprotein α-chain (Cga), thyroid-stimulating hormone β-chain (Tshb), and TRH receptor (Trhr). In vivo, the expression of Cga and Tshb was robust, whereas the expression of Trhr was low. In cultured pituitary cells, there was a progressive decline in the expression of Cga, Tshb, and Trhr. The expression of Tshb could not be reversed via pulsatile or continuous TRH application in variable concentrations and treatment duration or by the removal of thyroid and steroid hormones from the sera. In parallel, the expression of CGA and TSHB proteins declined progressively in pituitary cells from both sexes. The lack of the effect of TRH on Tshb expression was not related to the age of pituitary cultures and the presence of functional TRH receptors. In cultured pituitary fragments, there was also a rapid decline in expression of these genes, but TRH was able to induce transient Tshb expression. In vivo, thyrotrophs were often in close proximity to each other and to somatotroph and folliculostellate cell networks and especially to the lactotroph cell network; such an organization pattern was lost in vitro. These observations suggest that the lack of influence of anterior pituitary architecture and/or intrapituitary factors probably accounts for the loss of basal and TRH-stimulated Tshb expression in dispersed pituitary cells.
    Endocrinology 10/2014; DOI:10.1210/en.2014-1281 · 4.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NCoR1 (Nuclear Receptor Co-Repressor) and SMRT (Silencing Mediator of Retinoid and Thyroid Hormone Receptors, NCoR2) are well-recognized coregulators of nuclear receptor (NR) action. However, their unique roles in the regulation of thyroid hormone (TH) signaling in specific cell types have not been determined. To accomplish this we generated mice that lacked function of either NCoR1, SMRT or both in the liver only and additionally a global SMRT knock-out model. Despite both corepressors being present in the liver, deletion of SMRT in either euthyroid or hypothyroid animals had little effect on TH signaling. In contrast, disruption of NCoR1 action confirmed that it is the principal mediator of TH sensitivity in vivo. Similarly, global disruption of SMRT, unlike the global disruption of NCoR1, did not affect TH levels. While SMRT played little role in TH-regulated pathways, when disrupted in combination with NCoR1 it greatly accentuated the synthesis and storage of hepatic lipid. Taken together these data demonstrate that corepressor specificity exists in vivo and NCoR1 is the principal regulator of TH action. However, both corepressors collaborate to control hepatic lipid content, which likely reflects their cooperative activity in regulating the action of multiple NRs including the TH receptor (TR). Copyright © 2014, American Society for Microbiology. All Rights Reserved.
    Molecular and Cellular Biology 11/2014; 35(3). DOI:10.1128/MCB.01208-14 · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pituitary receptor for thyrotropin-releasing hormone (TRH) is a calcium-mobilizing G protein-coupled receptor (GPCR) that signals through Gq/11, elevating calcium, and activating protein kinase C. TRH receptor signaling is quickly desensitized as a consequence of receptor phosphorylation, arrestin binding, and internalization. Following activation, TRH receptors are phosphorylated at multiple Ser/Thr residues in the cytoplasmic tail. Phosphorylation catalyzed by GPCR kinase 2 (GRK2) takes place rapidly, reaching a maximum within seconds. Arrestins bind to two phosphorylated regions, but only arrestin bound to the proximal region causes desensitization and internalization. Phosphorylation at Thr365 is critical for these responses. TRH receptors internalize in clathrin-coated vesicles with bound arrestin. Following endocytosis, vesicles containing phosphorylated TRH receptors soon merge with rab5-positive vesicles. Over approximately 20 min these form larger endosomes rich in rab4 and rab5, early sorting endosomes. After TRH is removed from the medium, dephosphorylated receptors start to accumulate in rab4-positive, rab5-negative recycling endosomes. The mechanisms responsible for sorting dephosphorylated receptors to recycling endosomes are unknown. TRH receptors from internal pools help repopulate the plasma membrane. Dephosphorylation of TRH receptors begins when TRH is removed from the medium regardless of receptor localization, although dephosphorylation is fastest when the receptor is on the plasma membrane. Protein phosphatase 1 is involved in dephosphorylation but the details of how the enzyme is targeted to the receptor remain obscure. It is likely that future studies will identify biased ligands for the TRH receptor, novel arrestin-dependent signaling pathways, mechanisms responsible for targeting kinases and phosphatases to the receptor, and principles governing receptor trafficking.
    Frontiers in Neuroscience 12/2012; 6:180. DOI:10.3389/fnins.2012.00180

Ricardo H Costa-e-Sousa