Article

Radiation dose and cataract surgery incidence in atomic bomb survivors, 1986-2005.

Department of Clinical Studies, Radiation Effects Research Foundation, Nagasaki, Japan
Radiology (Impact Factor: 6.21). 08/2012; 265(1):167-74. DOI: 10.1148/radiol.12111947
Source: PubMed

ABSTRACT Purpose: To examine the incidence of clinically important cataracts in relation to lens radiation doses between 0 and approximately 3 Gy to address risks at relatively low brief doses. Materials and Methods: Informed consent was obtained, and human subjects procedures were approved by the ethical committee at the Radiation Effects Research Foundation. Cataract surgery incidence was documented for 6066 atomic bomb survivors during 1986-2005. Sixteen risk factors for cataract, such as smoking, hypertension, and corticosteroid use, were not confounders of the radiation effect on the basis of Cox regression analysis. Radiation dose-response analyses were performed for cataract surgery incidence by using Poisson regression analysis, adjusting for demographic variables and diabetes mellitus, and results were expressed as the excess relative risk (ERR) and the excess absolute risk (EAR) (ie, measures of how much radiation multiplies [ERR] or adds to [EAR] the risk in the unexposed group). Results: Of 6066 atomic bomb survivors, 1028 underwent a first cataract surgery during 1986-2005. The estimated threshold dose was 0.50 Gy (95% confidence interval [CI]: 0.10 Gy, 0.95 Gy) for the ERR model and 0.45 Gy (95% CI: 0.10 Gy, 1.05 Gy) for the EAR model. A linear-quadratic test for upward curvature did not show a significant quadratic effect for either the ERR or EAR model. The linear ERR model for a 70-year-old individual, exposed at age 20 years, showed a 0.32 (95% CI: 0.17, 0.52) excess risk at 1 Gy. The ERR was highest for those who were young at exposure. Conclusion: These data indicate a radiation effect for vision-impairing cataracts at doses less than 1 Gy. The evidence suggests that dose standards for protection of the eye from brief radiation exposures should be 0.5 Gy or less. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12111947/-/DC1.

0 Followers
 · 
149 Views
  • Source
    • "In this respect, it would be important to consider different underlying etiologies, as Worgul et al. mentioned earlier that though the reason for the varying response of epithelial cells to different doses is unknown, it is possible that the production of radiation cataract may involve more than one mechanism [35]. Human radiation cataracts are typical late effects that reportedly take a few months to decades to appear [36], [37]. Common radiogenic cataracts are PSC cataracts, but cortical cataracts have also been associated with radiation exposure [38], [39]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the past century, ionizing radiation has been known to induce cataracts in the crystalline lens of the eye, but its mechanistic underpinnings remain incompletely understood. This study is the first to report the clonogenic survival of irradiated primary normal human lens epithelial cells and stimulation of its proliferation. Here we used two primary normal human cell strains: HLEC1 lens epithelial cells and WI-38 lung fibroblasts. Both strains were diploid, and a replicative lifespan was shorter in HLEC1 cells. The colony formation assay demonstrated that the clonogenic survival of both strains decreases similarly with increasing doses of X-rays. A difference in the survival between two strains was actually insignificant, although HLEC1 cells had the lower plating efficiency. This indicates that the same dose inactivates the same fraction of clonogenic cells in both strains. Intriguingly, irradiation enlarged the size of clonogenic colonies arising from HLEC1 cells in marked contrast to those from WI-38 cells. Such enhanced proliferation of clonogenic HLEC1 cells was significant at ≥2 Gy, and manifested as increments of ≤2.6 population doublings besides sham-irradiated controls. These results suggest that irradiation of HLEC1 cells not only inactivates clonogenic potential but also stimulates proliferation of surviving uniactivated clonogenic cells. Given that the lens is a closed system, the stimulated proliferation of lens epithelial cells may not be a homeostatic mechanism to compensate for their cell loss, but rather should be regarded as abnormal. This is because these findings are consistent with the early in vivo evidence documenting that irradiation induces excessive proliferation of rabbit lens epithelial cells and that suppression of lens epithelial cell divisions inhibits radiation cataractogenesis in frogs and rats. Thus, our in vitro model will be useful to evaluate the excessive proliferation of primary normal human lens epithelial cells that may underlie radiation cataractogenesis, warranting further investigations.
    PLoS ONE 05/2014; 9(5):e98154. DOI:10.1371/journal.pone.0098154 · 3.23 Impact Factor
  • Source
    • "Although studies provide additional evidence for radiation causing damage to the eye, even at low doses, most studies in the literature do not allow assessment of the clinical impact of the radiation associated opacities [29]. Ionizing radiation exposure has been identified to link to vision-impairing cataracts in the A-bomb survivors in a recent study [39], although further research is needed to focus on interventional cardiologists regarding radiation exposure and development of cataracts. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Concerns about ionizing radiation during interventional cardiology have been increased in recent years as a result of rapid growth in interventional procedure volumes and the high radiation doses associated with some procedures. Noncancer radiation risks to cardiologists and medical staff in terms of radiation-induced cataracts and skin injuries for patients appear clear potential consequences of interventional cardiology procedures, while radiation-induced potential risk of developing cardiovascular effects remains less clear. This paper provides an overview of the evidence-based reviews of concerns about noncancer risks of radiation exposure in interventional cardiology. Strategies commonly undertaken to reduce radiation doses to both medical staff and patients during interventional cardiology procedures are discussed; optimisation of interventional cardiology procedures is highlighted.
    08/2013; 2013:976962. DOI:10.1155/2013/976962
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Screening for full face transplantation candidates includes computed tomographic vascular mapping of the external carotid distribution for potential arterial and venous anastomoses. The purpose of this study is to illustrate the benefits and drawbacks of cine computed tomographic imaging for preoperative vascular mapping compared with best arterial and venous phase static images. Methods: Two image data sets were retrospectively created and compared for diagnostic findings. The first set of images was the clinical cine computed tomographic acquisition including all phases. The second set of images was composed of the best arterial and best venous phases extracted from the cine loop and determined by the quality of contrast enhancement. For each patient, the benefits and drawbacks of the cine loop were documented in consensus by a plastic surgeon and a radiologist. Results: Cine loop analysis identified retrograde arterial filling not illustrated on the static images alone. Cine assessment identified most of the major vessels necessary for surgery, whereas the static images depicted small vessels more clearly, particularly in the crowded vessel takeoffs. Conclusions: Cine computed tomographic images provide data on direction of blood flow, which is important for preoperative planning. Combination of cine computed tomographic and the best static images will allow comprehensive vascular assessment necessary for future successful full face transplantation.
    Eplasty 12/2012; 12:e57.
Show more