Asymmetric flow field-flow fractionation of superferrimagnetic iron oxide multicore nanoparticles.

Institute of Photonic Technology, Department of Nano Biophotonics, Jena, Germany.
Nanotechnology (Impact Factor: 3.67). 08/2012; 23(35):355701. DOI: 10.1088/0957-4484/23/35/355701
Source: PubMed

ABSTRACT Magnetic nanoparticles are very useful for various medical applications where each application requires particles with specific magnetic properties. In this paper we describe the modification of the magnetic properties of magnetic multicore nanoparticles (MCNPs) by size dependent fractionation. This classification was carried out by means of asymmetric flow field-flow fractionation (AF4). A clear increase of the particle size with increasing elution time was confirmed by multi-angle laser light scattering coupled to the AF4 system, dynamic light scattering and Brownian diameters determined by magnetorelaxometry. In this way 16 fractions of particles with different hydrodynamic diameters, ranging between around 100 and 500 nm, were obtained. A high reproducibility of the method was confirmed by the comparison of the mean diameters of fractions of several fractionation runs under identical conditions. The hysteresis curves were measured by vibrating sample magnetometry. Starting from a coercivity of 1.41 kA m(-1) for the original MCNPs the coercivity of the particles in the different fractions varied from 0.41 to 3.83 kA m(-1). In our paper it is shown for the first time that fractions obtained from a broad size distributed MCNP fluid classified by AF4 show a strong correlation between hydrodynamic diameter and magnetic properties. Thus we state that AF4 is a suitable technology for reproducible size dependent classification of magnetic multicore nanoparticles suspended as ferrofluids.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resovist® originally developed as a clinical liver contrast agent for Magnetic Resonance Imaging exhibits also an outstanding performance as a tracer in Magnetic Particle Imaging (MPI). In order to study the physical mechanism of the high MPI performance of Resovist®, we applied asymmetric flow field–flow fractionation (A4F) and static magnetic fractionation (SMF) to separate Resovist® into a set of fractions with defined size classes. As A4F based on an elution method separates MNP according to their hydrodynamic size, SMF fractionates a particle distribution by its magnetic moment. The obtained fractions of both separation techniques were then magnetically characterized by magnetorelaxometry measurements to extract the corresponding effective magnetic anisotropy and hydrodynamic size distribution parameters. Additionally, the MPI performance of each fraction was assessed using magnetic particle spectroscopy. With both separation techniques fractions (normalized to their iron amount) an MPI signal gain of a factor of two could be obtained, even though the distribution of effective anisotropy and hydrodynamic size were significantly different. Relating these findings to the results from magnetic characterization allows for a better understanding of the underlying mechanisms of MPI performance of Resovist®. This knowledge may help to improve the design of novel MPI tracers and development of separation methods.
    Journal of Magnetism and Magnetic Materials 08/2014; · 2.00 Impact Factor