Article

A vaccine directed to B cells and produced by cell-free protein synthesis generates potent antilymphoma immunity.

Division of Oncology, Department of Medicine, Stanford University Medical Center, and Departments of Chemical Engineering and Bioengineering, Stanford University, Stanford, CA 94305.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 08/2012; 109(36):14526-31. DOI: 10.1073/pnas.1211018109
Source: PubMed

ABSTRACT Clinical studies of idiotype (Id) vaccination in patients with lymphoma have established a correlation between the induced anti-Id antibody responses and favorable clinical outcomes. To streamline the production of an Id vaccine, we engineered a small diabody (Db) molecule containing both a B-cell-targeting moiety (anti-CD19) and a lymphoma Id. This molecule (αCD19-Id) was designed to penetrate lymph nodes and bind to noncognate B cells to form an antigen presentation array. Indeed, the αCD19-Id molecule accumulated on B cells in vivo after s.c. administration. These noncognate B cells, decorated with the diabody, could then stimulate the more rare Id-specific B cells. Peptide epitopes present in the diabody linker augmented the response by activating CD4(+) helper T cells. Consequently, the αCD19-Id molecule induced a robust Id-specific antibody response and protected animals from tumor challenge. Such diabodies are produced in a cell-free protein expression system within hours of amplification of the specific Ig genes from the B-cell tumor. This customized product can now be available to vaccinate patients before they receive other, potentially immunosuppressive, therapies.

Full-text

Available from: Shoshana Levy, Jun 02, 2015
0 Followers
 · 
126 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of malaria vaccines is challenging, partly because the immunogenicity of recombinant malaria parasite antigens is low. We previously demonstrated that parasite antigens integrated into a tricomponent immunopotentiating complex increase antiparasitic immunity. In this study, the B domains of a group G Streptococcus (SpG) and Peptostreptococcus magnus (PpL) were used to evaluate whether vaccine efficacy is influenced by the type of immunoglobulin-binding domain (IBD) in the tricomponent complex. IBDs were fused to a pentameric cartilage oligomeric matrix protein (COMP) to increase the binding avidity of the complexes for their targets. The COMP-IBD fusion proteins generated (COMP-SpG and COMP-PpL, and the previously constructed COMP-Z) bound a large fraction of splenic B lymphocytes, but not T lymphocytes. These carrier molecules were then loaded with an ookinete surface protein of Plasmodium vivax, Pvs25, by chemical conjugation. The administration of the tricomponent complexes to mice induced more Pvs25-specific serum IgG than the unloaded antigen. The PpL complex, which exhibited a broad Ig-binding spectrum, conferred higher vaccine efficacy than the Z or SpG complexes when evaluated with a membrane feed assay. This study demonstrates that this tricomponent immunopotentiating system, incorporating IBDs as the B-lymphocyte-targeting ligands, is a promising technology for the delivery of malaria vaccines, particularly when combined with an aluminum salt adjuvant.
    Clinical and vaccine Immunology: CVI 02/2014; DOI:10.1128/CVI.00053-14 · 2.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The engineering of and master over biological parts has catalyzed the emergence of synthetic biology. This field has grown exponentially in the past decade. As increasingly more applications of synthetic biology are pursued, more challenges are encountered, such as delivering genetic material into cells and optimizing genetic circuits in vivo. An in vitro or cell-free approach to synthetic biology simplifies and avoids many of the pitfalls of in vivo synthetic biology. In this review, we describe some of the innate features that make cell-free systems compelling platforms for synthetic biology and discuss emerging improvements of cell-free technologies. We also select and highlight recent and emerging applications of cell-free synthetic biology.
    FEBS Letters 06/2014; DOI:10.1016/j.febslet.2014.05.062 · 3.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic HCV infection has been implicated in the induction and maintenance of B-cell lymphomas. The strongest evidence for this comes from clinical observations of tumor regressions upon anti-viral treatments. Here we used multiple methods to test the hypothesis that the expansion of HCV-specific B cells gives rise to lymphomas. We obtained lymphoma tissues from HCV-infected lymphoma patients, including some that later regressed upon anti-viral treatments. We expressed the lymphoma B-cell receptors (BCRs) as soluble IgGs and membrane IgMs, and analyzed their reactivity with HCV proteins and with HCV virions. We confirmed previous reports that HCV-associated lymphomas use a restricted immunoglobulin variable region (V) gene repertoire. However, we found no evidence for their binding to the HCV antigens. We conclude that most lymphomas of HCV-infected patients do not arise from B cells aimed at eliminating the virus.
    Blood 01/2014; 123(10). DOI:10.1182/blood-2013-10-532895 · 9.78 Impact Factor