Fibrils colocalize caspase-3 with procaspase-3 to foster maturation

From the Departments of Pharmaceutical Chemistry and.
Journal of Biological Chemistry (Impact Factor: 4.57). 08/2012; 287(40):33781-95. DOI: 10.1074/jbc.M112.386128
Source: PubMed

ABSTRACT Most proteases are expressed as inactive precursors, or zymogens, that become activated by limited proteolysis. We previously identified a small molecule, termed 1541, that dramatically promotes the maturation of the zymogen, procaspase-3, to its mature form, caspase-3. Surprisingly, compound 1541 self-assembles into nanofibrils, and localization of procaspase-3 to the fibrils promotes activation. Here, we interrogate the biochemical mechanism of procaspase-3 activation on 1541 fibrils in addition to proteogenic amyloid-β(1-40) fibrils. In contrast to previous reports, we find no evidence that procaspase-3 alone is capable of self-activation, consistent with its fate-determining role in executing apoptosis. In fact, mature caspase-3 is >10(7)-fold more active than procaspase-3, making this proenzyme a remarkably inactive zymogen. However, we also show that fibril-induced colocalization of trace amounts of caspase-3 or other initiator proteases with procaspase-3 dramatically stimulates maturation of the proenzyme in vitro. Thus, similar to known cellular signaling complexes, these synthetic or natural fibrils can serve as platforms to concentrate procaspase-3 for trans-activation by upstream proteases.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Allostery is a fundamental regulatory mechanism which is based on a functional modulation of a site by a distant site. Allosteric regulation can be triggered by binding of diverse allosteric effectors, ranging from small molecules to macromolecules, and is therefore offering promising opportunities for functional modulation in a wide range of applications including the development of chemical probes or drug discovery. Here, we provide an overview of key classes of allosteric protease effectors, their corresponding molecular mechanisms and their practical implications.
    ACS Chemical Biology 11/2012; 8(1). DOI:10.1021/cb3005935 · 5.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the past 15 years, fragment-based lead discovery (FBLD) has been adopted widely throughout academia and industry. The approach entails discovering very small molecular fragments and growing, merging, or linking them to produce drug leads. Because the affinities of the initial fragments are often low, detection methods are pushed to their limits, leading to a variety of artifacts, false positives, and false negatives that too often go unrecognized. This Digest discusses some of these problems and offers suggestions to avoid them. Although the primary focus is on FBLD, many of the lessons also apply to more established approaches such as high-throughput screening.
    Bioorganic & medicinal chemistry letters 03/2013; 23(10). DOI:10.1016/j.bmcl.2013.03.028 · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Procaspase-3 (P3) and procaspase-7 (P7) are activated through proteolytic maturation to form caspase-3 (C3) and caspase-7 (C7), respectively, which serve overlapping but nonredundant roles as the executioners of apoptosis in humans. However, it is unclear if differences in P3 and P7 maturation mechanisms underlie their unique biological functions, as the structure of P3 remains unknown. Here, we report structures of P3 in a catalytically inactive conformation, structures of P3 and P7 bound to covalent peptide inhibitors that reveal the active conformation of the zymogens, and the structure of a partially matured C7:P7 heterodimer. Along with a biochemical analysis, we show that P3 is catalytically inactive and matures through a symmetric all-or-nothing process. In contrast, P7 contains latent catalytic activity and matures through an asymmetric and tiered mechanism, suggesting a lower threshold for activation. Finally, we use our structures to design a selection strategy for conformation specific antibody fragments that stimulate procaspase activity, showing that executioner procaspase conformational equilibrium can be rationally modulated. Our studies provide a structural framework that may help to explain the unique roles of these important proapoptotic enzymes, and suggest general strategies for the discovery of proenzyme activators.
    Proceedings of the National Academy of Sciences 05/2013; 110(21). DOI:10.1073/pnas.1306759110 · 9.81 Impact Factor
Show more