Article

Urinary Proteomics for Early Diagnosis in Diabetic Nephropathy

mosaiques diagnostics GmbH, Hannover, Germany.
Diabetes (Impact Factor: 7.9). 08/2012; 61(12). DOI: 10.2337/db12-0348
Source: PubMed

ABSTRACT Diabetic nephropathy (DN) is a progressive kidney disease, a well-known complication of long-standing diabetes. DN is the most frequent reason for dialysis in many Western countries. Early detection may enable development of specific drugs and early initiation of therapy, thereby postponing/preventing the need for renal replacement therapy. We evaluated urinary proteome analysis as a tool for prediction of DN. Capillary electrophoresis-coupled mass spectrometry was used to profile the low-molecular weight proteome in urine. We examined urine samples from a longitudinal cohort of type 1 and 2 diabetic patients (n = 35) using a previously generated chronic kidney disease (CKD) biomarker classifier to assess peptides of collected urines for signs of DN. The application of this classifier to samples of normoalbuminuric subjects up to 5 years prior to development of macroalbuminuria enabled early detection of subsequent progression to macroalbuminuria (area under the curve [AUC] 0.93) compared with urinary albumin routinely used to determine the diagnosis (AUC 0.67). Statistical analysis of each urinary CKD biomarker depicted its regulation with respect to diagnosis of DN over time. Collagen fragments were prominent biomarkers 3-5 years before onset of macroalbuminuria. Before albumin excretion starts to increase, there is a decrease in collagen fragments. Urinary proteomics enables noninvasive assessment of DN risk at an early stage via determination of specific collagen fragments.

Full-text

Available from: Petra Zürbig, Mar 31, 2015
2 Bookmarks
 · 
207 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Progressive CKD is generally detected at a late stage by a sustained decline in eGFR and/or the presence of significant albuminuria. With the aim of early and improved risk stratification of patients with CKD, we studied urinary peptides in a large cross-sectional multicenter cohort of 1990 individuals, including 522 with follow-up data, using proteome analysis. We validated that a previously established multipeptide urinary biomarker classifier performed significantly better in detecting and predicting progression of CKD than the current clinical standard, urinary albumin. The classifier was also more sensitive for identifying patients with rapidly progressing CKD. Compared with the combination of baseline eGFR and albuminuria (area under the curve [AUC]=0.758), the addition of the multipeptide biomarker classifier significantly improved CKD risk prediction (AUC=0.831) as assessed by the net reclassification index (0.303±-0.065; P<0.001) and integrated discrimination improvement (0.058±0.014; P<0.001). Correlation of individual urinary peptides with CKD stage and progression showed that the peptides that associated with CKD, irrespective of CKD stage or CKD progression, were either fragments of the major circulating proteins, suggesting failure of the glomerular filtration barrier sieving properties, or different collagen fragments, suggesting accumulation of intrarenal extracellular matrix. Furthermore, protein fragments associated with progression of CKD originated mostly from proteins related to inflammation and tissue repair. Results of this study suggest that urinary proteome analysis might significantly improve the current state of the art of CKD detection and outcome prediction and that identification of the urinary peptides allows insight into various ongoing pathophysiologic processes in CKD. Copyright © 2015 by the American Society of Nephrology.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetic nephropathy (DN) is the leading cause of end stage renal disease in the Western world. Microalbuminuria (MA) is the earliest and most commonly used clinical index of DN and is independently associated with cardiovascular risk in diabetic patients. Although MA remains an essential tool for risk stratification and monitoring disease progression in DN, a number of factors have called into question its predictive power. Originally thought to be predictive of future overt DN in 80% of patients, we now know that only around 30% of microalbuminuric patients progress to overt nephropathy after 10 years of follow up. In addition, advanced structural alterations in the glomerular basement membrane may already have occurred by the time MA is clinically detectable.Evidence in recent years suggests that a significant proportion of patients with MA can revert to normoalbuminuria and the concept of nonalbuminuric DN is well-documented, reflecting the fact that patients with diabetes can demonstrate a reduction in glomerular filtration rate without progressing from normo-to MA. There is an unmet clinical need to identify biomarkers with potential for earlier diagnosis and risk stratification in DN and recent developments in this field will be the focus of this review article.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The degree and the origins of quantitative variability of most human plasma proteins are largely unknown. Because the twin study design provides a natural opportunity to estimate the relative contribution of heritability and environment to different traits in human population, we applied here the highly accurate and reproducible SWATH mass spectrometry technique to quantify 1,904 peptides defining 342 unique plasma proteins in 232 plasma samples collected longitudinally from pairs of monozygotic and dizygotic twins at intervals of 2-7 years, and proportioned the observed total quantitative variability to its root causes, genes, and environmental and longitudinal factors. The data indicate that different proteins show vastly different patterns of abundance variability among humans and that genetic control and longitudinal variation affect protein levels and biological processes to different degrees. The data further strongly suggest that the plasma concentrations of clinical biomarkers need to be calibrated against genetic and temporal factors. Moreover, we identified 13 cis-SNPs significantly influencing the level of specific plasma proteins. These results therefore have immediate implications for the effective design of blood-based biomarker studies. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.
    Molecular Systems Biology 02/2015; 11(2). DOI:10.15252/msb.20145728 · 14.10 Impact Factor