The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy

Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia.
European journal of human genetics: EJHG (Impact Factor: 4.35). 08/2012; 21(3). DOI: 10.1038/ejhg.2012.156
Source: PubMed


The clinical understanding of the CDKL5 disorder remains limited, with most information being derived from small patient groups seen at individual centres. This study uses a large international data collection to describe the clinical profile of the CDKL5 disorder and compare with Rett syndrome (RTT). Information on individuals with cyclin-dependent kinase-like 5 (CDKL5) mutations (n=86) and females with MECP2 mutations (n=920) was sourced from the InterRett database. Available photographs of CDKL5 patients were examined for dysmorphic features. The proportion of CDKL5 patients meeting the recent Neul criteria for atypical RTT was determined. Logistic regression and time-to-event analyses were used to compare the occurrence of Rett-like features in those with MECP2 and CDKL5 mutations. Most individuals with CDKL5 mutations had severe developmental delay from birth, seizure onset before the age of 3 months and similar non-dysmorphic features. Less than one-quarter met the criteria for early-onset seizure variant RTT. Seizures and sleep disturbances were more common than in those with MECP2 mutations whereas features of regression and spinal curvature were less common. The CDKL5 disorder presents with a distinct clinical profile and a subtle facial, limb and hand phenotype that may assist in differentiation from other early-onset encephalopathies. Although mutations in the CDKL5 gene have been described in association with the early-onset variant of RTT, in our study the majority did not meet these criteria. Therefore, the CDKL5 disorder should be considered separate to RTT, rather than another variant.European Journal of Human Genetics advance online publication, 8 August 2012; doi:10.1038/ejhg.2012.156.

Download full-text


Available from: Stephanie Fehr, Oct 03, 2015
1 Follower
27 Reads
  • Source
    • "Females are heterozygous for CDKL5 deficiency and are mosaic for mutated CDKL5 gene due to random Xchromosome inactivation. Males may also be affected, although with a lower incidence, and have a more severe phenotype (Fehr et al., 2013; Guerrini and Parrini, 2012). CDKL5, also known as STK9, is a serine/threonine protein kinase that is highly expressed in the brain, mainly in neurons with both a nuclear and dendrite localization (Chen et al., 2010; Ricciardi et al., 2012; Rusconi et al., 2008; Zhu et al., 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in a rare neurodevelopmental disorder characterized by early-onset seizures, severe developmental delay, intellectual disability and Rett syndrome-like features. CDKL5 is highly expressed in the brain during early postnatal stages, suggesting its importance for brain maturation. Using a newly-generated Cdkl5 knockout (Cdkl5 -/Y) mouse, we recently found that loss of Cdkl5 impairs postnatal hippocampal development with a reduction in neuronal precursor survival and maturation. These defects were accompanied by increased activity of the glycogen synthase kinase 3β (GSK3β) a crucial inhibitory regulator of many neurodevelopmental processes. The goal of the current study was to establish whether inhibition of GSK3β corrects hippocampal developmental defects due to Cdkl5 loss. We found that treatment with the GSK3β inhibitor SB216763 restored neuronal precursor survival, dendritic maturation, connectivity and hippocampus-dependent learning and memory in the Cdkl5 -/Y mouse. Importantly, these effects were retained one month after treatment cessation. At present, there are no therapeutic strategies to improve the neurological defects of subjects with CDKL5 disorder. Current results point at GSK3β inhibitors as potential therapeutic tools for the improvement of abnormal brain development in CDKL5 disorder. Copyright © 2015. Published by Elsevier Inc.
    Neurobiology of Disease 07/2015; 82. DOI:10.1016/j.nbd.2015.06.018 · 5.08 Impact Factor
  • Source
    • "Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause early-onset epileptic encephalopathy [1]. Although CDKL5 disorder shares several features with Rett Syndrome, a neurodevelopmental disorder caused by mutations in the X-linked MECP2 gene [2], recent work assessing data from 86 subjects has argued that it should be considered a distinct clinical entity, primarily due to its early onset and lack of clinical regression following a period of normal development [3]. The primary clinical features of CDKL5 disorder are seizures initiating in the first few months of life, stereotypical hand movements, motor rigidity, and deficient language acquisition [3], [4]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in cyclin-dependent kinase-like 5 (CDKL5) cause early-onset epileptic encephalopathy, a neurodevelopmental disorder with similarities to Rett Syndrome. Here we describe the physiological, molecular, and behavioral phenotyping of a Cdkl5 conditional knockout mouse model of CDKL5 disorder. Behavioral analysis of constitutive Cdkl5 knockout mice revealed key features of the human disorder, including limb clasping, hypoactivity, and abnormal eye tracking. Anatomical, physiological, and molecular analysis of the knockout uncovered potential pathological substrates of the disorder, including reduced dendritic arborization of cortical neurons, abnormal electroencephalograph (EEG) responses to convulsant treatment, decreased visual evoked responses (VEPs), and alterations in the Akt/rpS6 signaling pathway. Selective knockout of Cdkl5 in excitatory and inhibitory forebrain neurons allowed us to map the behavioral features of the disorder to separable cell-types. These findings identify physiological and molecular deficits in specific forebrain neuron populations as possible pathological substrates in CDKL5 disorder.
    PLoS ONE 05/2014; 9(5):e91613. DOI:10.1371/journal.pone.0091613 · 3.23 Impact Factor
  • Source
    • "In addition, hypotonia, limited hand skills, poor eye contact and autistic symptoms are the common features of all the patients. Although the symptoms of our patients with CDKL5 mutations overlap with some features of Hanefeld variant of RTT, recent reports have clarified that CDKL5-related disorder should be considered as separate from RTT, rather than another variant [25,26]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the cyclin-dependent kinase-like 5 (CDKL5) (NM_003159.2) gene have been associated with early-onset epileptic encephalopathies or Hanefeld variants of RTT(Rett syndrome). In order to clarify the CDKL5 genotype-phenotype correlations in Chinese patients, CDKL5 mutational screening in cases with early-onset epileptic encephalopathies and RTT without MECP2 mutation were performed. The detailed clinical information including clinical manifestation, electroencephalogram (EEG), magnetic resonance imaging (MRI), blood, urine amino acid and organic acid screening of 102 Chinese patients with early-onset epileptic encephalopathies and RTT were collected. CDKL5 gene mutations were analyzed by PCR, direct sequencing and multiplex ligation-dependent probe amplification (MLPA). The patterns of X-chromosome inactivation (XCI) were studied in the female patients with CDKL5 gene mutation. De novo CDKL5 gene mutations were found in ten patients including one missense mutation (c.533G > A, p.R178Q) which had been reported, two splicing mutations (ISV6 + 1A > G, ISV13 + 1A > G), three micro-deletions (c.1111delC, c.2360delA, c.234delA), two insertions (c.1791 ins G, c.891_892 ins TT in a pair of twins) and one nonsense mutation (c.1375C > T, p.Q459X). Out of ten patients, 7 of 9 females with Hanefeld variants of RTT and the remaining 2 females with early onset epileptic encephalopathy, were detected while only one male with infantile spasms was detected. The common features of all female patients with CDKL5 gene mutations included refractory seizures starting before 4 months of age, severe psychomotor retardation, Rett-like features such as hand stereotypies, deceleration of head growth after birth and poor prognosis. In contrast, the only one male patient with CDKL5 mutation showed no obvious Rett-like features as females in our cohort. The X-chromosome inactivation patterns of all the female patients were random. Mutations in CDKL5 gene are responsible for 7 with Hanefeld variants of RTT and 2 with early-onset epileptic encephalopathy in 71 girls as well as for 1 infantile spasms in 31 males. There are some differences in the phenotypes among genders with CDKL5 gene mutations and CDKL5 gene mutation analysis should be considered in both genders.
    BMC Medical Genetics 02/2014; 15(1):24. DOI:10.1186/1471-2350-15-24 · 2.08 Impact Factor
Show more