A survey of informatics platforms that enable distributed comparative effectiveness research using multi-institutional heterogenous clinical data.

School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA.
Medical care (Impact Factor: 2.94). 07/2012; 50 Suppl:S49-59. DOI: 10.1097/MLR.0b013e318259c02b
Source: PubMed

ABSTRACT Comparative effectiveness research (CER) has the potential to transform the current health care delivery system by identifying the most effective medical and surgical treatments, diagnostic tests, disease prevention methods, and ways to deliver care for specific clinical conditions. To be successful, such research requires the identification, capture, aggregation, integration, and analysis of disparate data sources held by different institutions with diverse representations of the relevant clinical events. In an effort to address these diverse demands, there have been multiple new designs and implementations of informatics platforms that provide access to electronic clinical data and the governance infrastructure required for interinstitutional CER. The goal of this manuscript is to help investigators understand why these informatics platforms are required and to compare and contrast 6 large-scale, recently funded, CER-focused informatics platform development efforts. We utilized an 8-dimension, sociotechnical model of health information technology to help guide our work. We identified 6 generic steps that are necessary in any distributed, multi-institutional CER project: data identification, extraction, modeling, aggregation, analysis, and dissemination. We expect that over the next several years these projects will provide answers to many important, and heretofore unanswerable, clinical research questions.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Integrated data repositories (IDRs) are indispensable tools for numerous biomedical research studies. We compare three large IDRs (Informatics for Integrating Biology and the Bedside (i2b2), HMO Research Network's Virtual Data Warehouse (VDW) and Observational Medical Outcomes Partnership (OMOP) repository) in order to identify common architectural features that enable efficient storage and organization of large amounts of clinical data. We define three high-level classes of underlying data storage models and we analyze each repository using this classification. We look at how a set of sample facts is represented in each repository and conclude with a list of desiderata for IDRs that deal with the information storage model, terminology model, data integration and value-sets management.
    AMIA ... Annual Symposium proceedings / AMIA Symposium. AMIA Symposium 01/2013; 2013:648-56.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Presently, the process of extraction and dissemination of data subsets for research from clinical data warehouses is cumbersome and error prone. Furthermore, large-scale research projects often involve multiple users of the same data extract; each of these users may be authorized to access different data elements and specific subsets of the data extract. Once initial data extraction has been done for a research project, capability to transform the data for individual users and track which data are being accessed by which users in a secure environment is lacking in existing systems. This paper describes several methods that the authors are integrating into a system designed to provide secure, flexible, and auditable support for supplying users with data subsets. The methods implement secure, redactable, and auditable mechanisms for data extraction and dissemination. This paper describes the architecture along with an initial proof-of-concept implementation. Preliminary performance measurements show that the approach manages clinical data in redactable and auditable form with reasonable overheads.
    AMIA Summits on Translational Science proceedings AMIA Summit on Translational Science. 01/2013; 2013:21-25.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Electronic health information systems can increase the ability of health-care organizations to investigate the effects of clinical interventions. The authors present an organizing framework that integrates outcomes and informatics research paradigms to guide knowledge discovery in electronic clinical databases. They illustrate its application using the example of hospital acquired pressure ulcers (HAPU). The Knowledge Discovery through Informatics for Comparative Effectiveness Research (KDI-CER) framework was conceived as a heuristic to conceptualize study designs and address potential methodological limitations imposed by using a single research perspective. Advances in informatics research can play a complementary role in advancing the field of outcomes research including CER. The KDI-CER framework can be used to facilitate knowledge discovery from routinely collected electronic clinical data. French Les systèmes d'information électroniques sur la santé peuvent accroître la capacité des organismes de soins de santé à étudier les effets des interventions cliniques. Le présent article propose un cadre organisationnel qui intègre les paradigmes de la recherche en informatique et de la recherche sur les résultats afin de faciliter la création de connaissances à l'aide de bases de données cliniques. Afin d'illustrer le cadre proposé, les auteurs l'appliquent à l'exemple des plaies de pression. Ce cadre de création de connaissances à l'aide de l'informatique aux fins de la recherche comparative sur l'efficacité des traitements (CCI-RCET) a été conçu dans le but de servir d'outil heuristique pour la conceptualisation des modèles d'étude et de surmonter les contraintes méthodologiques que peut éventuellement imposer toute perspective de recherche unique. Les percées de la recherche en informatique appliquée peuvent jouer un rôle complémentaire dans le développement du champ de la recherche sur les résultats, y compris de la recherche comparative sur l'efficacité des traitements. Le cadre de CCI-RCET peut être utilisé afin de favoriser la production de connaissances à partir des données cliniques électroniques qui sont recueillies de façon systématique.
    The Canadian journal of nursing research = Revue canadienne de recherche en sciences infirmières 03/2013; 45(1).