Article

Exercise training prevents oxidative stress and ubiquitin-proteasome system overactivity and reverse skeletal muscle atrophy in heart failure.

School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
PLoS ONE (Impact Factor: 3.53). 08/2012; 7(8):e41701. DOI: 10.1371/journal.pone.0041701
Source: PubMed

ABSTRACT Heart failure (HF) is known to lead to skeletal muscle atrophy and dysfunction. However, intracellular mechanisms underlying HF-induced myopathy are not fully understood. We hypothesized that HF would increase oxidative stress and ubiquitin-proteasome system (UPS) activation in skeletal muscle of sympathetic hyperactivity mouse model. We also tested the hypothesis that aerobic exercise training (AET) would reestablish UPS activation in mice and human HF.
Time-course evaluation of plantaris muscle cross-sectional area, lipid hydroperoxidation, protein carbonylation and chymotrypsin-like proteasome activity was performed in a mouse model of sympathetic hyperactivity-induced HF. At the 7(th) month of age, HF mice displayed skeletal muscle atrophy, increased oxidative stress and UPS overactivation. Moderate-intensity AET restored lipid hydroperoxides and carbonylated protein levels paralleled by reduced E3 ligases mRNA levels, and reestablished chymotrypsin-like proteasome activity and plantaris trophicity. In human HF (patients randomized to sedentary or moderate-intensity AET protocol), skeletal muscle chymotrypsin-like proteasome activity was also increased and AET restored it to healthy control subjects' levels.
Collectively, our data provide evidence that AET effectively counteracts redox imbalance and UPS overactivation, preventing skeletal myopathy and exercise intolerance in sympathetic hyperactivity-induced HF in mice. Of particular interest, AET attenuates skeletal muscle proteasome activity paralleled by improved aerobic capacity in HF patients, which is not achieved by drug treatment itself. Altogether these findings strengthen the clinical relevance of AET in the treatment of HF.

Full-text

Available from: Julio Cesar Batista Ferreira, May 29, 2015
0 Followers
 · 
107 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neurohormonal excitation and dyspnea are the hallmarks of heart failure (HF) and have long been associated with poor prognosis in HF patients. Sympathetic nerve activity (SNA) and ventilatory equivalent of carbon dioxide (VE/VO(2)) are elevated in moderate HF patients, and increased even further in severe HF patients. The increase in SNA in HF patients is present regardless of age, gender, and etiology of systolic dysfunction. Neurohormonal activation is the major mediator of the peripheral vasoconstriction characteristic of HF patients. In addition, reduction in peripheral blood flow increases muscle inflammation, oxidative stress and protein degradation, which is the essence of the skeletal myopathy and exercise intolerance in HF. Here we discuss the beneficial effects of exercise training on resting SNA in patients with systolic HF and its central and peripheral mechanisms of control. Further, we discuss the exercise-mediated improvement in peripheral vasoconstriction in patients with HF. We will also focus on the effects of exercise training on ventilatory responses. Finally, we review the effects of exercise training on features of the skeletal myopathy in HF. In summary, exercise training plays an important role in HF, working synergistically with pharmacological therapies to ameliorate these abnormalities in clinical practice. Copyright © 2014, American Journal of Physiology - Heart and Circulatory Physiology.
    AJP Heart and Circulatory Physiology 02/2015; 308(8):ajpheart.00830.2014. DOI:10.1152/ajpheart.00830.2014 · 4.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Regular training is suggested to offer a host of benefits especially on cardiovascular system. In addition, medicinal plants can attenuate oxidative stress-mediated damages induced by stressor insults. In this study, we investigated the concomitant effect of cinnamon extract and long-term aerobic training on cardiac function, biochemical alterations and lipid profile following exhaustive exercise. Male Wistar rats (250-300 g) were divided into five groups depending on receiving regular training, cinnamon bark extraction, none or both of them, and then encountered with an exhausted exercise in last session. An 8-week endurance training program was designed with a progressive increase in training speed and time. Myocardial hemodynamics was monitored using a balloon-tipped catheter inserted into left ventricles. Blood samples were collected for analyzing biochemical markers, lipid profiles and lipid-peroxidation marker, malondealdehyde (MDA). Trained animals showed an enhanced cardiac force and contractility similar to cinnamon-treated rats. Co-application of regular training and cinnamon had additive effect in cardiac hemodynamic (P<0.05). Both regular training and supplementation with cinnamon significantly decreased serum levels of total cholesterol, low-density lipoprotein (LDL), and increased high-density lipoprotein (HDL) level and HDL/LDL ratio as compared to control group (P<0.01). Furthermore, pre-treatment with cinnamon extract and/or regular training significantly reduced MDA level elevation induced by exhausted exercise (P<0.01). Long-term treatment of rats with cinnamon and regular training improved cardiac hemodynamic through an additive effect. The positive effects of cinnamon and regular training on cardiac function were associated with a reduced serum MDA level and an improved blood lipid profile.
    Advanced Pharmaceutical Bulletin 12/2014; 4(Suppl 2):515-20. DOI:10.5681/apb.2014.076 · 0.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Heart failure (HF) is associated with cachexia and consequent exercise intolerance. Given the beneficial effects of aerobic exercise training (ET) in HF, the aim of this study was to determine if the ET performed during the transition from cardiac dysfunction to HF would alter the expression of anabolic and catabolic factors, thus preventing skeletal muscle wasting. Methods and Results We employed ascending aortic stenosis (AS) inducing HF in Wistar male rats. Controls were sham-operated animals. At 18 weeks after surgery, rats with cardiac dysfunction were randomized to 10 weeks of aerobic ET (AS-ET) or to an untrained group (AS-UN). At 28 weeks, the AS-UN group presented HF signs in conjunction with high TNF-α serum levels; soleus and plantaris muscle atrophy; and an increase in the expression of TNF-α, NFκB (p65), MAFbx, MuRF1, FoxO1, and myostatin catabolic factors. However, in the AS-ET group, the deterioration of cardiac function was prevented, as well as muscle wasting, and the atrophy promoters were decreased. Interestingly, changes in anabolic factor expression (IGF-I, AKT, and mTOR) were not observed. Nevertheless, in the plantaris muscle, ET maintained high PGC1α levels. Conclusions Thus, the ET capability to attenuate cardiac function during the transition from cardiac dysfunction to HF was accompanied by a prevention of skeletal muscle atrophy that did not occur via an increase in anabolic factors, but through anti-catabolic activity, presumably caused by PGC1α action. These findings indicate the therapeutic potential of aerobic ET to block HF-induced muscle atrophy by counteracting the increased catabolic state.
    PLoS ONE 10/2014; 9(10). DOI:10.1371/journal.pone.0110020 · 3.53 Impact Factor