Article

Management of Thyroid Dysfunction during Pregnancy and Postpartum: An Endocrine Society Clinical Practice Guideline

University of Rhode Island, Providence, Rhode Island 02881, USA.
The Journal of Clinical Endocrinology and Metabolism (Impact Factor: 6.31). 08/2012; 97(8):2543-65. DOI: 10.1210/jc.2011-2803
Source: PubMed

ABSTRACT The aim was to update the guidelines for the management of thyroid dysfunction during pregnancy and postpartum published previously in 2007. A summary of changes between the 2007 and 2012 version is identified in the Supplemental Data (published on The Endocrine Society's Journals Online web site at http://jcem.endojournals.org).
This evidence-based guideline was developed according to the U.S. Preventive Service Task Force, grading items level A, B, C, D, or I, on the basis of the strength of evidence and magnitude of net benefit (benefits minus harms) as well as the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system to describe both the strength of recommendations and the quality of evidence.
The guideline was developed through a series of e-mails, conference calls, and one face-to-face meeting. An initial draft was prepared by the Task Force, with the help of a medical writer, and reviewed and commented on by members of The Endocrine Society, Asia and Oceania Thyroid Association, and the Latin American Thyroid Society. A second draft was reviewed and approved by The Endocrine Society Council. At each stage of review, the Task Force received written comments and incorporated substantive changes.
Practice guidelines are presented for diagnosis and treatment of patients with thyroid-related medical issues just before and during pregnancy and in the postpartum interval. These include evidence-based approaches to assessing the cause of the condition, treating it, and managing hypothyroidism, hyperthyroidism, gestational hyperthyroidism, thyroid autoimmunity, thyroid tumors, iodine nutrition, postpartum thyroiditis, and screening for thyroid disease. Indications and side effects of therapeutic agents used in treatment are also presented.

Download full-text

Full-text

Available from: Joanne F Rovet, Dec 04, 2014
2 Followers
 · 
279 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thyroid disease is a common problem among women of reproductive age but often goes undiagnosed. Maternal thyroid disease has been associated with increased risk of craniosynostosis. We hypothesized that known risk factors for thyroid disease would be associated with risk of craniosynostosis among women not diagnosed with thyroid disease. Analyses included mothers of 1,067 cases and 8,494 population-based controls who were interviewed for the National Birth Defects Prevention Study. We used multivariable logistic regression to estimate adjusted odds ratios (AOR) and 95% confidence intervals (CI). After excluding women with diagnosed thyroid disease, younger maternal age (AOR 0.7, 95% CI 0.6-0.9, for <25 years versus 25-29), black or other race-ethnicity (AOR 0.3, 95% CI 0.2-0.4 and AOR 0.6, 95% CI 0.4-0.8, respectively, relative to non-Hispanic whites), fertility medications or procedures (AOR 1.5, 95% CI 1.2-2.0), and alcohol consumption (AOR 0.8, 95% CI 0.7-0.9) were associated with risk of craniosynostosis, based on confidence intervals that excluded 1.0. These associations with craniosynostosis are consistent with the direction of their association with thyroid dysfunction (i.e., younger age, black race-ethnicity and alcohol consumption are associated with reduced risk and fertility problems are associated with increased risk of thyroid disease). This study thus provides support for the hypothesis that risk factors associated with thyroid dysfunction are also associated with risk of craniosynostosis. Improved understanding of the potential association between maternal thyroid function and craniosynostosis among offspring is important given that craniosynostosis carries significant morbidity and that thyroid disease is under-diagnosed and potentially modifiable. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 02/2015; 167(4). DOI:10.1002/ajmg.a.36953 · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thyrotoxicosis presenting during pregnancy is a common clinical problem and can be challenging to differentiate between physiologic patterns of thyroid dysfunction during gestation and intrinsic hyperthyroidism. This review provides a summary of the differential diagnosis, clinical presentation, diagnostic options, potential adverse effects of maternal thyrotoxicosis to the fetus, and treatment recommendations for thyrotoxicosis arising in pregnancy.
    12/2014; 1(4). DOI:10.1016/j.jcte.2014.07.008
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thyroid hormone (TH) is essential for brain development both before and after birth. We have used gene expression microarrays to identify TH-regulated genes in the fetal cerebral cortex prior to the onset of fetal thyroid function to better understand the role of TH in early cortical development. TH levels were transiently manipulated in pregnant mice by treatment with goitrogens from gestational day (GD) 13-16 and/or by injection of TH 12 h before sacrifice on GD 16. The transcriptional response to exogenous TH in the GD 16 fetal cortex was potentiated by transient goitrogen treatment, suggesting that the hypothyroxinemic brain is a different substrate upon which TH can act, or that robust compensatory mechanisms are induced by transient hypothyroxinemia. Several known TH-responsive genes were identified including Klf9, and several novel TH-responsive genes such as Appbp2, Ppap2b, and Fgfr1op2 were identified in which TH response elements were confirmed. We also identified specific microRNAs whose expression in the fetal cortex was affected by TH treatment, and determined that Ppap2b and Klf9 are the target genes of miR-16 and miR-106, respectively. Thus, a complex redundant functional network appears to coordinate TH-mediated gene expression in the developing brain.
    Cerebral Cortex 01/2014; 25(7). DOI:10.1093/cercor/bht364 · 8.31 Impact Factor