Article

Epigenetic mechanisms in neurological disease

Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Nature medicine (Impact Factor: 28.05). 08/2012; 18(8):1194-204. DOI: 10.1038/nm.2828
Source: PubMed

ABSTRACT The exploration of brain epigenomes, which consist of various types of DNA methylation and covalent histone modifications, is providing new and unprecedented insights into the mechanisms of neural development, neurological disease and aging. Traditionally, chromatin defects in the brain were considered static lesions of early development that occurred in the context of rare genetic syndromes, but it is now clear that mutations and maladaptations of the epigenetic machinery cover a much wider continuum that includes adult-onset neurodegenerative disease. Here, we describe how recent advances in neuroepigenetics have contributed to an improved mechanistic understanding of developmental and degenerative brain disorders, and we discuss how they could influence the development of future therapies for these conditions.

2 Followers
 · 
141 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polybrominated diphenyl ethers (PBDEs) are known endocrine disrupting chemicals used commonly as flame retardants in everything from electronics to furniture. Exposure to PBDEs during early development has been linked to neurodevelopmental delays. Despite mounting evidence of neurological harm from PBDE exposure, the molecular mechanisms underlying these effects on brain function remain unknown. We examined the effects of perinatal exposure to BDE-47, the most biologically active and prevalent BDE congener in North America, on epigenetic patterns in the frontal lobe of Wistar rats. Dams were gavaged with BDE-47 (0.002 and 0.2 mg/kg body weight) at gestation days 9 and 16, and postnatal days 1, 8, and 15. Frontal lobes from offspring at postnatal day 41 were collected to measure 5-methylcytosine (5mC) in mitochondrial cytochrome c oxidase genes (Mt-co1, Mt-co2, and Mt-co3), global nuclear 5-hydroxymethylcytosine (5hmC) content, 5mC in repetitive elements L1Rn, and 5mC in nuclear genes (Bdnf, Crhr1, Mc2r, Nr3c1, and Snca) related to behavioral and brain functions in the nuclear genome. We observed a significant decrease in %5mC in Mt-co2 (difference from control = −0.68%, p = 0.01 at the 0.2 mg/kg BDE-47). 5mC in repetitive elements L1Rn decreased at 0.002 mg/kg BDE-47 (difference = −1.23%, p = 0.02). Decreased nuclear 5mC was observed in Bdnf and Nr3c1 in BDE-47 exposed rats. However, we did not observe significant effects of PBDE toxicity on DNA methylation patterns for the majority of genes in the brain.
    Toxicology 12/2014; DOI:10.1016/j.tox.2014.12.019
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dietary interventions like gluten-free and casein-free diets have been reported to improve intestinal, autoimmune and neurological symptoms in patients with a variety of conditions; however, the underlying mechanism of benefit for such diets remains unclear. Epigenetic programming, including CpG methylation and histone modifications, occurring during early postnatal development can influence the risk of disease in later life, and such programming may be modulated by nutritional factors such as milk and wheat, especially during the transition from a solely milk-based diet to one that includes other forms of nutrition. The hydrolytic digestion of casein (a major milk protein) and gliadin (a wheat-derived protein) releases peptides with opioid activity, and in the present study, we demonstrate that these food-derived proline-rich opioid peptides modulate cysteine uptake in cultured human neuronal and gastrointestinal (GI) epithelial cells via activation of opioid receptors. Decreases in cysteine uptake were associated with changes in the intracellular antioxidant glutathione and the methyl donor S-adenosylmethionine. Bovine and human casein-derived opioid peptides increased genome-wide DNA methylation in the transcription start site region with a potency order similar to their inhibition of cysteine uptake. Altered expression of genes involved in redox and methylation homeostasis was also observed. These results illustrate the potential of milk- and wheat-derived peptides to exert antioxidant and epigenetic changes which may be particularly important during the postnatal transition from placental to GI nutrition. Differences between peptides derived from human and bovine milk may contribute to developmental differences between breastfed and formula-fed infants. Restricted antioxidant capacity, caused by wheat- and milk-derived opioid peptides, may predispose susceptible individuals to inflammation and systemic oxidation, partly explaining the benefits of gluten-free or casein-free diets.
    The Journal of Nutritional Biochemistry 10/2014; 25(10). DOI:10.1016/j.jnutbio.2014.05.004
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using expression profiles from postmortem prefrontal cortex samples of 624 dementia patients and non-demented controls, we investigated global disruptions in the co-regulation of genes in two neurodegenerative diseases, late-onset Alzheimer's disease (AD) and Huntington's disease (HD). We identified networks of differentially co-expressed (DC) gene pairs that either gained or lost correlation in disease cases relative to the control group, with the former dominant for both AD and HD and both patterns replicating in independent human cohorts of AD and aging. When aligning networks of DC patterns and physical interactions, we identified a 242-gene subnetwork enriched for independent AD/HD signatures. This subnetwork revealed a surprising dichotomy of gained/lost correlations among two inter-connected processes, chromatin organization and neural differentiation, and included DNA methyltransferases, DNMT1 and DNMT3A, of which we predicted the former but not latter as a key regulator. To validate the inter-connection of these two processes and our key regulator prediction, we generated two brain-specific knockout (KO) mice and show that Dnmt1 KO signature significantly overlaps with the subnetwork (P = 3.1 × 10−12), while Dnmt3a KO signature does not (P = 0.017).
    Molecular Systems Biology 07/2014; 10(7). DOI:10.15252/msb.20145304