Article

Hereditary cerebral small vessel diseases: A review

Department of Neurological, Neurosurgical and Behavioural Sciences, Medical School, University of Siena, Italy. Electronic address: .
Journal of the neurological sciences (Impact Factor: 2.26). 08/2012; 322(1-2):25-30. DOI: 10.1016/j.jns.2012.07.041
Source: PubMed

ABSTRACT Cerebral microangiopathies are responsible of a great number of strokes. In the recent years advances in molecular genetics identified several monogenic conditions involving cerebral small vessels and predisposing to ischemic and/or hemorrhagic stroke and diffuse white matter disease leading to vascular dementia. Clinical features and diagnostic clues of these conditions, [cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), COL4A1-related cerebral small vessel diseases, autosomal dominant retinal vasculopathy with cerebral leukodystrophy (AD-RVLC), and Fabry's disease] are here reviewed. Albeit with variable phenotypes and with different defective genes, all these disorders produce arteriopathy and microvascular disintegration with changes in brain functions. Specific diagnostic tools are recommended, genetic analysis being the gold standard for the diagnosis.

0 Followers
 · 
206 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular cognitive impairment defines alterations in cognition, ranging from subtle deficits to full-blown dementia, attributable to cerebrovascular causes. Often coexisting with Alzheimer's disease, mixed vascular and neurodegenerative dementia has emerged as the leading cause of age-related cognitive impairment. Central to the disease mechanism is the crucial role that cerebral blood vessels play in brain health, not only for the delivery of oxygen and nutrients, but also for the trophic signaling that inextricably links the well-being of neurons and glia to that of cerebrovascular cells. This review will examine how vascular damage disrupts these vital homeostatic interactions, focusing on the hemispheric white matter, a region at heightened risk for vascular damage, and on the interplay between vascular factors and Alzheimer's disease. Finally, preventative and therapeutic prospects will be examined, highlighting the importance of midlife vascular risk factor control in the prevention of late-life dementia.
    Neuron 11/2013; 80(4):844-866. DOI:10.1016/j.neuron.2013.10.008 · 15.98 Impact Factor
  • Source
    European Journal of Neurology 06/2013; DOI:10.1111/ene.12216 · 3.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accurate and timely diagnosis of dementia is important to guide management and provide appropriate information and support to patients and families. Currently, with the exception of individuals with genetic mutations, postmortem examination of brain tissue remains the only definitive means of establishing diagnosis in most cases, however, structural neuroimaging, in combination with clinical assessment, has value in improving diagnostic accuracy during life. Beyond the exclusion of surgical pathology, signal change and cerebral atrophy visible on structural MRI can be used to identify diagnostically relevant imaging features, which provide support for clinical diagnosis of neurodegenerative dementias. While no structural imaging feature has perfect sensitivity and specificity for a given diagnosis, there are a number of imaging characteristics which provide positive predictive value and help to narrow the differential diagnosis. While neuroradiological expertise is invaluable in accurate scan interpretation, there is much that a non-radiologist can gain from a focused and structured approach to scan analysis. In this article we describe the characteristic MRI findings of the various dementias and provide a structured algorithm with the aim of providing clinicians with a practical guide to assessing scans.
    Journal of neurology, neurosurgery, and psychiatry 10/2013; 85(6). DOI:10.1136/jnnp-2013-306285 · 5.58 Impact Factor